
AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 1 of 65

AdsML® Framework for E-Commerce
Business Standards for Advertising

E-Commerce Usage Rules & Guidelines

Document Authors: AdsML Technical Working Group

Document ID: AdsML3.5-EcommerceUsage-AS-1

Document File Name: AdsML3.5-EcommerceUsage-AS.pdf

Document Status: Approved Specification

Document Date: 15 April 2010

Draft Number: 1

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 2 of 65

Table of Contents
ADSML

®
 FRAMEWORK FOR E-COMMERCE BUSINESS STANDARDS FOR

ADVERTISING .. 1

E-COMMERCE USAGE RULES & GUIDELINES .. 1

1 ADSML STANDARD DOCUMENTATION .. 4

1.1 DOCUMENT STATUS AND COPYRIGHT .. 4
1.2 NON-EXCLUSIVE LICENSE AGREEMENT FOR ADSML CONSORTIUM SPECIFICATIONS 4
1.3 ADSML CODE OF CONDUCT .. 6
1.4 DOCUMENT NUMBER AND LOCATION .. 7
1.5 PURPOSE OF THIS DOCUMENT... 7
1.6 AUDIENCE .. 7
1.7 ACCOMPANYING DOCUMENTS ... 7
1.8 DEFINITIONS & CONVENTIONS ... 8

1.8.1 Definitions of key words used in the specification .. 8
1.8.2 Naming conventions – element, attribute, type, and file names .. 8
1.8.3 Typographical conventions ... 8

1.9 CHANGE HISTORY ... 8
1.10 ACKNOWLEDGEMENTS .. 9
1.11 THE ADSML CONSORTIUM .. 9

2 INTRODUCTION ... 9

2.1 IMPLEMENT ONLY WHAT YOU NEED ... 10

3 ADSML ARCHITECTURE AND TECHNICAL APPROACH ... 10

3.1 ADSML AND XML .. 10
3.2 SCHEMA ARCHITECTURE .. 11

3.2.1 Relationship to namespaces .. 12
3.2.2 Locating documentation based on the namespace .. 12
3.2.3 Schema filenames.. 13
3.2.4 Version, identification, and language ... 13

3.3 DATA TYPES .. 14
3.3.1 Data typing – 'weak' vs. 'strong' ... 14

3.4 MANDATORY VS. REQUIRED, BLANKS VS. NULLS ... 14
3.5 MESSAGE PROCESSING ... 15

3.5.1 Asynchronous messaging model ... 15
3.5.2 Message re-sending .. 16
3.5.3 Duplicate messages .. 17

3.6 GLOBALLY UNIQUE IDENTIFIERS .. 17
3.6.1 Types of QIDs ... 17
3.6.2 Structural rules ... 17
3.6.3 Scope of uniqueness .. 18

3.7 VALIDATION .. 18
3.7.1 Overview: schema validation vs. programmatic validation ... 18
3.7.2 Validation rules .. 20

3.8 SEQUENCE OF ELEMENTS ... 20
3.9 CUSTOMIZATION AND EXTENSIONS .. 21
3.10 INTERNATIONALIZATION ... 21
3.11 SECURITY AND ENCRYPTION .. 21

4 E-COMMERCE MESSAGES .. 21

4.1 CATEGORIES OF MESSAGES .. 21
4.1.1 Business-significant messages .. 21
4.1.2 Administrative responses .. 22
4.1.3 Message codes and structures .. 23
4.1.4 ZZ-Error responses to catastrophic errors ... 24

4.2 MESSAGE CHOREOGRAPHY ... 24
4.2.1 Request-response vs. datagram communications ... 24

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 3 of 65

4.2.2 Categories of message exchange patterns .. 27
4.2.3 Support for the message exchange patterns .. 28
4.2.4 Integrating “manual” messages into the AdsML choreography 29

4.3 MESSAGE CONTENTS ... 30
4.3.1 Change messages .. 30
4.3.2 Business Response vs. Status messages .. 32
4.3.3 Multiple business objects in one message ... 35
4.3.4 “Informational” structures ... 35

4.4 MULTILINGUAL CONTENT .. 35
4.4.1 Rules for recording and handling multilingual content .. 36

4.5 RELATIONSHIP OF ADSML MESSAGES TO BUSINESS AND TECHNICAL OPERATIONS 37

5 ADMINISTRATIVE RESPONSES AND ERROR HANDLING.. 37

5.1 WHEN TO SEND AN ADMINISTRATIVE RESPONSE .. 38
5.1.1 Responses to responses ... 38

5.2 MESSAGE TYPES .. 38
5.3 TECHNICAL ERRORS ... 38
5.4 WORKFLOW IMPLICATIONS .. 39

6 ESTABLISHING COMMUNICATIONS ... 39

6.1 MESSAGE TRANSMISSION MECHANISM .. 39
6.1.1 Conveyance of binary materials ... 40

6.2 TESTING ... 40
6.2.1 Testing the transmission channel .. 41
6.2.2 Testing communications between business systems .. 41

7 ACHIEVING INTEROPERABILITY .. 41

7.1 CONFIGURATION CHECKLISTS .. 42
7.1.1 Checklists vs. conformance levels ... 42
7.1.2 Use of configuration checklists ... 42

7.2 CONTROLLED VOCABULARIES ... 43
7.2.1 Validating controlled values ... 43
7.2.2 The AdsML Controlled Vocabularies ... 44
7.2.3 Examples ... 45

7.3 USER-DEFINED PROPERTIES ... 46
7.3.1 Usage rules ... 47
7.3.2 Syntax examples .. 47

7.4 PROFILES ... 49
7.4.1 Types of information ... 49
7.4.2 Profile identification ... 51

7.5 TRADING PARTNER AGREEMENT .. 52
7.5.1 Process Partnership Agreement ... 54

7.6 PARTY IDENTIFICATION ... 54

8 IMPLEMENTING CONTROLLED VOCABULARIES WITH SCHEMA-BASED

VALIDATION .. 55

8.1 INTRODUCTION & RULES FOR USE .. 55
8.1.1 Root types ... 56
8.1.2 AdsML defined Controlled Vocabularies .. 57
8.1.3 User defined Controlled Vocabularies ... 57
8.1.4 Guidelines for controlled vocabulary use in AdsML .. 57
8.1.5 Illustrative example of the AdsML controlled vocabulary mechanism 58

8.2 USER DEFINED CONTROLLED VOCABULARIES .. 59
8.2.1 Rules for creating user-defined controlled vocabularies .. 59
8.2.2 Creating user-defined controlled vocabularies .. 59
8.2.3 Creating a user extension schema .. 62
8.2.4 Validating against user defined controlled vocabularies ... 64

9 REFERENCES .. 65

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 4 of 65

10 APPENDIX A: ACKNOWLEDGEMENT FOR CONTRIBUTIONS TO THIS

DOCUMENT .. 65

1 AdsML Standard Documentation

1.1 Document status and copyright
This is an Approved Specification of the AdsML E-commerce Usage Rules &

Guidelines.

Copyright © 2010 AdsML Consortium. All rights reserved. Information in this

document is made available for the public good, may be used by third parties and

may be reproduced and distributed, in whole and in part, provided

acknowledgement is made to AdsML Consortium and provided it is accepted

that AdsML Consortium rejects any liability for any loss of revenue, business or

goodwill or indirect, special, consequential, incidental or punitive damages or

expense arising from use of the information.

Copyright Acknowledgements: The AdsML Non-Exclusive License Agreement is

based on the “Non-Exclusive License Agreement” on Page iii of "OpenTravel™

Alliance Message Specifications – Publication 2001A", September 27, 2001,

Copyright © 2001. OpenTravel™ Alliance, Inc. The AdsML Code of Conduct is

based on the “OTA Code of Conduct” on Page ix of "OpenTravel™ Alliance

Message Specifications – Publication 2001A", September 27, 2001, Copyright ©

2001. OpenTravel™ Alliance, Inc.

1.2 Non-Exclusive License Agreement for

AdsML Consortium Specifications

USER LICENSE

IMPORTANT: AdsML Consortium specifications and related documents, whether

the document be in a paper or electronic format, are made available to you

subject to the terms stated below. Please read the following carefully.

1. All AdsML Consortium Copyrightable Works are licensed for use only on the

condition that the users agree to this license, and this work has been

provided according to such an agreement. Subject to these and other

licensing requirements contained herein, you may, on a non-exclusive

basis, use the Specification.

2. The AdsML Consortium openly provides this specification for voluntary use

by individuals, partnerships, companies, corporations, organizations and

any other entity for use at the entity‟s own risk. This disclaimer, license

and release is intended to apply to the AdsML Consortium, its officers,

directors, agents, representatives, members, contributors, affiliates,

contractors, or coventurers (collectively the AdsML Consortium) acting

jointly or severally.

3. This document and translations of it may be copied and furnished to

others, and derivative works that comment on or otherwise explain it or

assist in its implementation may be prepared, copied, published and

distributed, in whole or in part, without restriction of any kind, provided

that the above copyright notice and this Usage License are included on all

such copies and derivative works. However, this document itself may not

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 5 of 65

be modified in any way, such as by removing the copyright notice or

references to the AdsML Consortium, except as needed for the purpose of

developing AdsML specifications, in which case the procedures for

copyrights defined in the AdsML Process document must be followed, or as

required to translate it into languages other than English. The limited

permissions granted above are perpetual and will not be revoked by

AdsML or its successors or assigns.

4. Any use, duplication, distribution, or exploitation of the Specification in

any manner is at your own risk.

5. NO WARRANTY, EXPRESSED OR IMPLIED, IS MADE REGARDING THE

ACCURACY, ADEQUACY, COMPLETENESS, LEGALITY, RELIABILITY OR

USEFULNESS OF ANY INFORMATION CONTAINED IN THIS DOCUMENT OR

IN ANY SPECIFICATION OR OTHER PRODUCT OR SERVICE PRODUCED OR

SPONSORED BY THE ADSML CONSORTIUM. THIS DOCUMENT AND THE

INFORMATION CONTAINED HEREIN AND INCLUDED IN ANY

SPECIFICATION OR OTHER PRODUCT OR SERVICE OF THE ADSML

CONSORTIUM IS PROVIDED ON AN "AS IS" BASIS. THE ADSML

CONSORTIUM DISCLAIMS ALL WARRANTIES OF ANY KIND, EXPRESS OR

IMPLIED, INCLUDING BUT NOT LIMITED TO, ANY ACTUAL OR ASSERTED

WARRANTY OF NON-INFRINGEMENT OF PROPRIETARY RIGHTS,

MERCHANTABILITY, OR FITNESS FOR A PARTICULAR PURPOSE. NEITHER

THE ADSML CONSORTIUM NOR ITS CONTRIBUTORS SHALL BE HELD

LIABLE FOR ANY IMPROPER OR INCORRECT USE OF INFORMATION.

NEITHER THE ADSML CONSORTIUM NOR ITS CONTRIBUTORS ASSUME

ANY RESPONSIBILITY FOR ANYONE'S USE OF INFORMATION PROVIDED

BY THE ADSML CONSORTIUM. IN NO EVENT SHALL THE ADSML

CONSORTIUM OR ITS CONTRIBUTORS BE LIABLE TO ANYONE FOR

DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO,

COMPENSATORY DAMAGES, LOST PROFITS, LOST DATA OR ANY FORM OF

SPECIAL, INCIDENTAL, INDIRECT, CONSEQUENTIAL OR PUNITIVE

DAMAGES OF ANY KIND WHETHER BASED ON BREACH OF CONTRACT OR

WARRANTY, TORT, PRODUCT LIABILITY OR OTHERWISE.

6. The AdsML Consortium takes no position regarding the validity or scope of

any intellectual property or other rights that might be claimed to pertain to

the implementation or use of the technology described in this document or

the extent to which any license under such rights might or might not be

available. The AdsML Consortium does not represent that it has made any

effort to identify any such rights. Copies of claims of rights made available

for publication, assurances of licenses to be made available, or the result

of an attempt made to obtain a general license or permission for the use

of such proprietary rights by implementers or users of this specification,

can be obtained from the Secretariat of the AdsML Consortium.

7. By using this specification in any manner or for any purpose, you release

the AdsML Consortium from all liabilities, claims, causes of action,

allegations, losses, injuries, damages, or detriments of any nature arising

from or relating to the use of the Specification or any portion thereof. You

further agree not to file a lawsuit, make a claim, or take any other formal

or informal legal action against the AdsML Consortium, resulting from your

acquisition, use, duplication, distribution, or exploitation of the

Specification or any portion thereof. Finally, you hereby agree that the

AdsML Consortium is not liable for any direct, indirect, special or

consequential damages arising from or relating to your acquisition, use,

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 6 of 65

duplication, distribution, or exploitation of the Specification or any portion

thereof.

8. This User License is perpetual subject to your conformance to the terms of

this User License. The AdsML Consortium may terminate this User License

immediately upon your breach of this agreement and, upon such

termination you will cease all use duplication, distribution, and/or

exploitation in any manner of the Specification.

9. This User License reflects the entire agreement of the parties regarding

the subject matter hereof and supercedes all prior agreements or

representations regarding such matters, whether written or oral. To the

extent any portion or provision of this User License is found to be illegal or

unenforceable, then the remaining provisions of this User License will

remain in full force and effect and the illegal or unenforceable provision

will be construed to give it such effect as it may properly have that is

consistent with the intentions of the parties. This User License may only be

modified in writing signed by an authorized representative of the AdsML

Consortium. This User License will be governed by the law of Darmstadt

(Federal Republic of Germany), as such law is applied to contracts made

and fully performed in Darmstadt (Federal Republic of Germany). Any

disputes arising from or relating to this User License will be resolved in the

courts of Darmstadt (Federal Republic of Germany). You consent to the

jurisdiction of such courts over you and covenant not to assert before such

courts any objection to proceeding in such forums.

10. Except as expressly provided herein, you may not use the name of the

AdsML Consortium, or any of its marks, for any purpose without the prior

consent of an authorized representative of the owner of such name or

mark.

IF YOU DO NOT AGREE TO THESE TERMS PLEASE CEASE ALL USE OF THIS

SPECIFICATION NOW. IF YOU HAVE ANY QUESTIONS ABOUT THESE TERMS,

PLEASE CONTACT THE SECRETARIAT OF THE ADSML CONSORTIUM.

AS OF THE DATE OF THIS REVISION OF THE SPECIFICATION YOU MAY CONTACT

THE AdsML Consortium at www.adsml.org.

1.3 AdsML Code of Conduct

The AdsML Code of Conduct governs AdsML Consortium activities. A reading or

reference to the AdsML Code of Conduct begins every AdsML activity, whether a

meeting of the AdsML Consortium, AdsML Working Groups, or AdsML conference

calls to resolve a technical issue. The AdsML Code of Conduct says:

Trade associations are perfectly lawful organizations. However, since a trade

association is, by definition, an organization of competitors, AdsML Consortium

members must take precautions to ensure that we do not engage in activities

which can be interpreted as violating anti-trust or other unfair competition laws.

For any activity which is deemed to unreasonably restrain trade, AdsML, its

members and individual representatives may be subject to severe legal penalties,

regardless of our otherwise beneficial objectives. It is important to realize,

therefore, that an action that may seem to make "good business sense" can

injure competition and therefore be prohibited under the antitrust or unfair

competition laws.

http://www.adsml.org/

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 7 of 65

To ensure that we conduct all meetings and gatherings in strict compliance with

any such laws and agreements in any part of the world, the AdsML Code of

Conduct is to be distributed and/or read aloud at all such gatherings.

 There shall be no discussion of rates, fares, surcharges, conditions, terms

or prices of services, allocating or sharing of customers, or refusing to deal

with a particular supplier or class of suppliers. Neither serious nor flippant

remarks about such subjects will be permitted.

 AdsML shall not issue recommendations about any of the above subjects

or distribute to its members any publication concerning such matters. No

discussions that directly or indirectly fix purchase or selling prices may

take place.

 There shall be no discussions of members‟ marketing, pricing or service

plans.

 All AdsML related meetings shall be conducted in accordance with a

previously prepared and distributed agenda.

 If you are uncomfortable about the direction that you believe a discussion

is heading, you should say so promptly.

Members may have varying views about issues that AdsML deals with. They are

encouraged to express themselves in AdsML activities. However, official AdsML

communications to the public are the sole responsibility of the AdsML Consortium.

To avoid creating confusion among the public, therefore, the Steering Committee

must approve press releases and any other forms of official AdsML

communications to the public before they are released.

1.4 Document Number and Location
This document, Document Number AdsML3.5-EcommerceUsage-AS-1, is freely

available. It is located at the AdsML website at http://www.adsml.org/.

1.5 Purpose of this document
This document provides technical and business-process rules and guidelines about

aspects of the AdsML standards that are common to all of them. It supplements

the information found in the specifications for each of the specific standards and

should be considered an integral part of the textual specification of those

standards.

1.6 Audience
The intended audience for this document is any prospective user of AdsML,

interested parties, and the AdsML Consortium.

Comments on this document should be addressed to the Technical Working Group

of the AdsML Consortium (technical.wg@adsml.org).

1.7 Accompanying documents
This document is part of the AdsML Framework, which contains a suite of related

documents. Readers of this document are assumed to be familiar with the full

range of relevant AdsML documentation. A description of the entire document set

can be found in the ReadMeFirst html file associated with this release of the

Framework.

http://www.adsml.org/
mailto:technical.wg@adsml.org

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 8 of 65

1.8 Definitions & conventions

1.8.1 Definitions of key words used in the
specification

The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are used

as described in IETF RFC 2119 (See Section 9 References). When any of these

words do not appear in upper case as above, then they are being used with their

usual English language sense and meaning.

1.8.2 Naming conventions – element, attribute, type,

and file names
All element, attribute, and type names follow the 'CamelCase' convention.

Element and type names begin using upper camel case and begin with capitals

(UpperCamelCase). For example, „AdsML‟, „MessageRef‟, and

„AdsMLStatusType‟.

Attribute names begin using lower camel case and begin with lower case

(lowerCamelCase). For example, „language’ or „messageId’.

File names also follow the camel case convention and use upper camel case for

each segment of the file name, plus dashes to separate the segments of the file

name. Only the first two digits of the version number are included in the file

name. The third digit of the version number (if there is one) and the Draft

Number are only shown internally within the document. The full naming

conventions for AdsML schema and specification file names are described in the

document AdsML Document Names and Identifiers – Guidelines and Examples, a

copy of which is included in this release of the Framework.

Schema for user-defined extensions to AdsML should use AdsML naming

conventions as detailed above. For example, „ExampleInstanceFile.xml‟,

„ExampleSchemaFile-1.0.xsd‟, „ExampleSchemaFile-1.1.xsd‟.

In some cases, element names mentioned in usage guidelines and narrative text

in this document do not include their namespace prefix. This simplification is

provided in order to make the text easier to read. Element names in code

fragments are always shown with their full namespace prefix.

1.8.3 Typographical conventions
Element and type names are given in Courier font as, for example, AdOrder.

Attribute names are given in italicized Courier font as, for example, messageCode.

When citing examples of values that could be assigned to elements or attributes,

the value is given in Courier font, so “…the attribute taking the value of „12‟”.

1.9 Change History

Draft Date Changes Editor

3.5 – AS April 15 2010 First Approved version for

Framework 3.5 – previous change

history removed

JC

3.0 – AS 1 May 30 2008 First Approved version – previous TS

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 9 of 65

change history removed

1.10 Acknowledgements
This document is a product of the AdsML Technical Working Group.

Primary authorship and editing was performed by:

 Jay Cousins (RivCom) – jay.cousins@rivcom.com

 Tony Stewart (RivCom) – tony.stewart@rivcom.com

 Ulf Wingstedt (CNET/Svenska) – ulf.wingstedt@cnet.se

Additional material was provided by:

 Joe Kirk (K Media Solutions) - kmedia@btinternet.com

Acknowledgements and thanks to other contributors for additional input to this

document are listed in Appendix A: Acknowledgement for contributions to this

document.

1.11 The AdsML Consortium
The documents comprising the AdsML standard were written by the AdsML

Technical Working Group, a committee charged with creating the consortium‟s

technical deliverables, and then approved by the entire membership.

More information about the consortium can be found in the AdsML Framework

Overview and on the consortium‟s website: www.adsml.org.

2 Introduction
The AdsML Framework of E-commerce Business Standards consists of a growing

set of standards that are designed to work together to implement e-commerce

communications and solve specific business problems in the advertising workflow.

These standards exist at two levels:

 the “AdsML Envelope” standard defines an XML delivery envelope that can

convey any number of business messages between two trading partners;

 a set of “Item-level” e-commerce standards define XML message formats

for specific types of information or transactions, for example, insertion

orders, invoices or artwork.

The AdsML Item-level standards are so called because they define message

formats that can be used as “Items” in the AdsML Envelope. Use of the AdsML

Envelope, while encouraged, is optional, and the Item-Level standards can be

used both inside and outside of the AdsML Envelope.

The AdsML standards are part of the AdsML “Framework”. In practice this means

that they share both an e-commerce philosophy and a resulting set of design

principles; they use common element and attribute names and structures; and

they support a common message choreography (i.e. the pattern by which

messages are exchanged between trading partners).

This document provides technical and business-process rules and guidelines about

aspects of the AdsML standards that are common to all of them. It supplements

the information found in the specifications for each of the individual standards.

Information about elements and choreographic patterns which apply to a specific

AdsML item-level standard can be found in the specification for that standard.

mailto:jay.cousins@rivcom.com
mailto:tony.stewart@rivcom.com
mailto:ulf.wingstedt@cnet.se
mailto:kmedia@btinternet.com
http://www.adsml.org/

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 10 of 65

Information about elements which are part of the AdsML Type Library, and are

imported into each of the AdsML item-level standards, can be found in the type

library specification.

2.1 Implement only what you need
The AdsML Framework aims to provide advertisers, publishers, broadcasters and

their suppliers with a consistent toolkit of standards, messages and transactions

that can be used to automate every aspect of the advertising supply chain, in any

media, anywhere in the world. This means that even though it is still incomplete,

the Framework already contains more standards and message types, and can

convey more types of information, than any single organization is likely to need.

In order to implement AdsML-based e-commerce, therefore, trading partners and

their vendors (or industry associations acting on their behalf) are expected to

review the AdsML Framework and decide:

1. Will they use the AdsML Envelope?

2. Which AdsML standards will they implement within their particular region or

business activity?

3. Which business transactions will they support?

4. Which types of information will they include in their messages?

5. Which information will be conveyed in machine-processable elements, vs.

which will be sent as unstructured text that requires human handling?

6. For which machine-processable elements will they require use of a

particular controlled vocabulary?

Each AdsML standard defines its mandatory and optional components, and where

appropriate, each provides a Configuration Checklist to help users discuss and

agree on the features and functionality that they will implement. These

implementation decisions can be agreed privately between the trading partners,

and/or codified in a formal “profile” which is made publicly available in order to

encourage interoperability.

Based on their customers‟ implementation decisions, vendors can decide which

types of AdsML functionality to implement in their systems. In order to market a

system‟s AdsML capabilities, a vendor might indicate that it supports specific

named Profiles, and/or the vendor might use the relevant Configuration

Checklist(s) to describe the supported capabilities.

Further information about these concepts can be found in AdsML E-Commerce

Usage Rules & Guidelines (this document), in the Advertising Components

Interactions Analysis, and in the Specification for each standard.

NOTE: Even though you can implement just those portions that you need, all of

the standards and features in the AdsML Framework are designed to work

together as a cohesive whole, in that they share common technical components

and a common approach to advertising e-commerce that makes them "AdsML".

3 AdsML architecture and technical

approach

3.1 AdsML and XML
The AdsML standards are applications of the Extensible Markup Language (XML).

Each AdsML standard is a vocabulary of XML elements and attributes that defines

and structures a messaging envelope for exchanging advertising data. An XML

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 11 of 65

Schema formally describes the structure of the AdsML data model in the XML data

model of elements and attributes, the XML data model creating a hierarchical

'tree' of nodes where nodes have a parent and child node relationship. When

using AdsML, advertising data is serialized for exchange in XML syntax as XML

documents using the AdsML vocabulary of elements and attributes. The

advertising data is then exchanged between trading partners as an XML data

stream that when parsed ('deserialized') can be validated against the relevant

AdsML schema to ensure that the data and any associated constraints upon that

data required by the AdsML data model and expressed by the AdsML Schema are

correctly enforced.

3.2 Schema architecture
As shown in the diagram below, each AdsML item-level standard (for example,

AdsMLBookings, AdsMLMaterials and AdsMLStructuredDescriptions) is defined in a

pair of schemas: a Main schema and a Public Type Library. Each standard‟s Main

schema contains elements that can only be used within that particular standard.

The matching Public Type Library contains elements that are only meaningful in

the context of the standard in question (i.e. they are intrinsically related to the

information involved in, for example, a Booking or a Materials Delivery), but

unlike the elements in the Main schema, they are allowed to be used in other

standards. And finally, AdsML also provides a global public type library, the

AdsMLTypeLibrary, which contains an extensive set of context-independent

components that can be used in any or all of the AdsML standards.

In practice, the Main schema of each standard uses the XML Schema “Include”

mechanism to pull in its matching Public Type Library, and uses the “Import”

mechanism to incorporate the global AdsMLTypeLibrary as well as any other

standard‟s Public Type Library that it requires.

For example, AdsMLBookings includes the AdsMLBookings Public Type Library but

imports the AdsMLTypeLibrary. It also imports the AdsMLMaterials public type

library in order to be able to support content delivery in a booking message.

AdsML-TypeLib

BookingsMain

Context

independent
reusable
components

A complete
standard‟s
schema

MaterialsMain

BookingsPubTypeLib
MaterialsPubTypeLib

Context
(standard)
specific reusable

components

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 12 of 65

3.2.1 Relationship to namespaces
When an AdsML schema includes its own Public Type Library, the elements in the

Public Type Library inherit the same namespace as the main schema. In the case

of the AdsML item-level standards, the Main schema (and its included Public Type

Library) is assigned to the default namespace, which means that in a message

conforming to that schema, elements which come from either the Main schema or

its associated Type Library do not have a namespace identifier. For example, the

root element in an AdsMLBookings message appears as, simply,

“<AdsMLBookings>”.

When an AdsML schema imports elements from the AdsMLTypeLibrary, those

elements are assigned the “adsml” namespace. This means that in a given

message, the names of all the elements that came from the AdsMLTypeLibrary

are preceded with the string “adsml:”, for example, “<adsml:Header>.”

And finally, when an AdsML schema imports elements from the Public Type

Library associated with another AdsML standard, it assigns those elements a

namespace whose name is in the format “adsml-xx”, where xx is an abbreviation

of the source standard. For example, in AdsMLBookings, the names of elements

that have been imported from the AdsMLMaterials Public Type Library begin with

“adsml-ma:”, for example, “<adsml-ma:AdContent>”.

3.2.2 Locating documentation based on the
namespace

The AdsML documentation set is organized so as to correspond to the schema

architecture.

 If an element‟s structure is defined in the Main or PublicTypeLibrary

schema for a given AdsML item-level standard, then its documentation

will be found in the Specification for that standard. Each item-level

Specification contains both usage rules and guidelines (part 1 of the

specification), and also an element-by-element reference guide (part 2).

 If an element‟s schema definition is in the AdsMLTypeLibrary, then both its

textual definition and any high-level usage rules and guidelines will be

found in the AdsML Type Library specification.

Because an element‟s schema location can be inferred from its namespace, the

namespaces in an AdsML instance message provide a valuable clue as to where to

find its documentation. For example, in an AdsMLBookings message:

Element name Schema Critical Usage

Rules (if any)

Textual

Definition

AdsMLBookings,

TotalPrice,

ProofType

AdsMLBookingsMain.xsd

or

AdsMLBookings-

PublicTypeLibrary.xsd

AdsMLBookings

Specification, part

1

AdsMLBookings

Specification, part

2

adsml:Header,

adsml:Status,

adsml:Role

AdsMLTypeLibrary.xsd AdsMLTypeLibrary

Specification

AdsMLTypeLibrary

Specification

adsml-

ma:AdContent,

adsml-

ma:Rendering

AdsMLMaterials-

Main.xsd

or

AdsMLMaterials-

AdsMLMaterials

Specification, part

1

AdsMLMaterials

Specification, part

2

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 13 of 65

PublicTypeLibrary.xsd

Note that in a Materials message the context will be reversed: elements and

types defined in AdsMLMaterials Main and the AdsMLMaterials Public Type library

will be assigned the default namespace (with no identifier), and elements and

types that are imported from AdsMLBookings will be assigned the “adsml-bo”

namespace.

3.2.3 Schema filenames
The schema files from a particular standard are named as follows:

AdsMLBookings-2.5-Main-AS.xsd

AdsMLBookings-2.5-PublicTypeLibrary-AS.xsd

The format starts with the name of the standard, e.g. “AdsMLBookings”, followed

by the current version number and the name of the schema within the standard.

The last two characters provide the status of the standard as either PS (Proposed

Standard) or AS (Approved Standard) for public releases (internal working

document have status code WD for Working Draft).

3.2.4 Version, identification, and language
The version, identification number, and language of each AdsML schema are

recorded using the optional version, id, and xml:lang attributes of the schema's

root <xs:schema> element.

Name Occurs Type Description

version ? The version attribute is used to record the version

number of the schema using a major and minor

version number, and optionally using a version

letter in the format X.Y.a, where 'X' is the major

version number, 'Y' is the minor version number,

and, if present, 'a' indicates a draft schema version

number.

The version number of the AdsML main and

supporting schemas will always be kept in sync, i.e.

version 'x.y' of the AdsML main schema will always

import version 'x.y' of the AdsML supporting

schemas.

id ? The id attribute is used to record a unique identifier

number for the schema (so that the schema can be

unambiguously identified).

xml:lang ? The xml:lang attribute is used to record the natural

human language used in the AdsML Schema itself.

The default language of the AdsML Schema is

American English. Language is recorded using ISO

coding as defined by IETF Request for Comment

3066.

For example, the AdsMLEnvelope schema records the version number, identifier,

and default language using these attributes as illustrated below,

<xs:schema targetNamespace="http://www.adsml.org/adsmlenvelope/1.1"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 14 of 65

xmlns="http://www.adsml.org/adsmlenvelope/1.1"

elementFormDefault="qualified" attributeFormDefault="unqualified"

version="1.1.0" id=" AdsMLEnvelope-1.1.0-Main-AS" xml:lang="en-us">

3.3 Data types

All data types used by in the AdsML XML Schemas are either XML Schema built-in

data types, or derived from those built-in types using XML Schema type

derivation by either the AdsML Schema or, in cases where users specify their own

controlled vocabulary data types, in a user-defined AdsML extension schema.

AdsML specifies no restriction on the data types that may be carried inside an

AdsMLEnvelope message as data inside the ContentData element, although such

data has to conform to the constraints applicable to character data in XML

documents as defined by the XML 1.0 specification1.

3.3.1 Data typing – 'weak' vs. 'strong'
The AdsML policy is to use 'weak' rather than 'strong' data typing for operational

reasons grounded in providing user flexibility and facilitating the implementation

and use of AdsML. Consequently, 'weak' data types are used where 'strong' data

types could have been specified in those places where any error would be non-

catastrophic and so not significant enough to upset the workflow.

3.4 Mandatory vs. required, blanks vs. nulls
In general, an AdsML message SHOULD NOT contain any empty elements or

attributes. Empty elements and attributes are potentially ambiguous because

they do not indicate whether the data was accidentally or deliberately omitted. To

prevent this ambiguity AdsML has defined the following rules governing when and

how empty or null values may be transmitted.

Each element or attribute in an AdsML standard is defined in its schema as being

either mandatory or optional. Some elements are additionally defined as being

“nillable” (nillable=”true”), which indicates that in an XML message instance

they may carry the attribute xsi:nil. These constraints should be interpreted as

follows:

 If an element or attribute is defined as mandatory, it MUST be present in

the corresponding XML message instance.

 If an element or attribute is defined as optional, it MAY be present in the

corresponding XML message instance, or it MAY be omitted.

 The presence of the attribute xsi:nil=“true” on an element in an XML

message instance indicates that the value of the element in question is

missing or unknown.

This leaves open the questions of what is signified by an empty element in an

AdsML message, and how to differentiate between null (missing or unknown)

values and deliberately blank/zero values. The following rules and guidelines

apply:

 If the value of a non-mandatory element or attribute is missing, unknown

or not applicable to the current workflow, the entire element or attribute

SHOULD be omitted from the message instance. The absence of an element

or attribute from an AdsML message instance SHOULD NOT be interpreted

1 For allowable text and character content in XML see the following sections of the XML specification:
Section 2.2 Characters, Section 2.4 Character Data and Markup, and Section 2.7 CDATA sections.

http://www.w3.org/TR/REC-xml#charsets
http://www.w3.org/TR/REC-xml#syntax
http://www.w3.org/TR/REC-xml#sec-cdata-sect

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 15 of 65

by the recipient as representing significant business information unless

explicitly agreed otherwise between the trading partners.

 If an element or attribute is present in an AdsML message instance, that

element or attribute MUST either:

 a) contain a valid business value, or

 b) contain an agreed-upon dummy value to indicate that it does not

contain valid business information (see below), or

 c) carry only the attribute xsi:nil with the value of “true”, which

indicates that it does not contain a valid business value. (This

option is only available for elements that are defined as nillable in

the AdsML schema.)

 The presence of an empty element with the attribute xsi:nil=“true”, or

the transmission of “-0-” as element or attribute content, indicates that

the value of that element or attribute is missing or unknown and SHOULD

NOT be considered to represent valid business information.

 The presence of an empty element or attribute in a message instance that

does not contain the attribute value xsi:nil=“true” SHOULD be assumed

by the receiver to represent valid business information, i.e. that the value

in question literally does not exist. For example, the presence of an empty

Email address element in a Contact structure would indicate that the

Contact in question is known not to possess an email address. Because of

the potential for misunderstanding, transmission of such “known not to

exist” values is strongly discouraged.

The AdsML Technical Working Group has attempted to define the schemas so that

they require as few mandatory elements and attributes as possible. However,

there may still be valid circumstances in which the value of a mandatory element

is either missing or unknown. In this case the mandatory element or attribute

should be explicitly identified as not containing meaningful business information

by following the following sequence of guidelines:

1. If the mandatory element or attribute is defined as an AdsML QID type, the

sender SHOULD attempt to populate it with a valid business value rather

than a dummy value.

2. If the value of the mandatory element still cannot be provided and it is

defined as nillable, the sender SHOULD transmit it as an empty element

with the single attribute xsi:nil=“true”.

3. If the value of a mandatory element or attribute that is capable of

conveying text strings cannot be provided and it is not defined as nillable,

the sender SHOULD populate it with the dummy value “-0-”.

Note that these rules do not constrain the interpretation of null values in a given

message, in particular whether the null data was “missing” vs. “unknown” vs.

“inapplicable”. The semantics of message content (including the presence or

absence of specific values) is determined by a combination of the relevant

schema and specification, the TPA between the trading partners, the nature of the

element or attribute in question and the context in which it occurs.

3.5 Message processing

3.5.1 Asynchronous messaging model
The AdsML standard supports an asynchronous messaging model. The main

advantage to this approach is that it minimizes locking of system resources and

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 16 of 65

transactions, enabling systems to continue operations after a message has been

sent. This is a prerequisite for handling very long-lived advertisement business

processes.

Many earlier e-commerce messaging models were often synchronous and/or built

with a central controlling node (client-server or master-slave models). Even

though these models can be implemented using the AdsML standards, AdsML also

supports the more flexible asynchronous approach to message exchange. As a

consequence, AdsML transactional messaging can be implemented using, for

instance, synchronous remote procedure calls, or asynchronous e-mail based

services, or even file-based transfers using hot folders, according to the

requirements of the communication parties.

In particular, the AdsML processing model has the following characteristics:

1. An AdsML system SHOULD NOT require an immediate response to a

request. A response might arrive after a few seconds, minutes, days or

even months – for instance, consider an ad order that requires manual

handling. But although responses are allowed to arrive late, it is strongly

RECOMMENDED that responses should be sent as soon as possible.

2. Messages are not guaranteed to arrive in the same sequence as they were

transmitted. Due to the underlying infrastructure for message exchange,

messages can take different routes, be delayed etc.

3. Both communication parties are “peers”, i.e. none is said to be in control

over the other (no “master-slave” model). Both parties are able to send

requests simultaneously, although conflicts should be avoided.

4. A communication party MAY send further messages without waiting for

responses for previous requests.

The AdsML standards include the means to handle an asynchronous operating

environment, in the form of metadata that, if properly used, allow communication

parties to detect and manage conflicts. However, communication parties MAY in

their mutual agreement (the TPA, or Trading Partner Agreement) define a less

flexible model that, for instance, states that a new request is not allowed to be

sent before a response to an earlier request has been received.

AdsML does not define how conflict resolution should be handled in case of, for

instance, both parties requesting conflicting updates2. Conflict resolution will be

highly application specific and SHOULD be defined as a part of the TPA.

3.5.2 Message re-sending
The sendCount attribute is used to signal when a message is a copy of an earlier

transmission. Its default value is „1‟. If a system re-sends a message, it MUST

indicate that this is a copy of a previous message by incrementing the sendCount

attribute. With each resending of a message, the sendCount attribute MUST be

incremented by 1 so that the value of this attribute always reflects the number of

times that a message has been sent. Therefore, a sendCount value greater than 1

indicates that the message is a copy of an earlier transmission.

With the exception of the sendCount, transmissionDateTime and

transmissionSequence attributes, the content of a re-sent message MUST be an

exact copy of the first transmitted message (including the transmissionID

attribute).

2 For example, conflict resolution would be required if a new order were being processed by a seller of
ad space, and the buyer of ad space submitted a change to that order before having received a
Business Significant Response to it. The timing of those messages might lead to confusion about the
exact current state of the order.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 17 of 65

3.5.3 Duplicate messages
Once a message has been received, any later re-transmissions of that message

MUST be discarded without further processing.

If two messages with the same transmissionID and the same sendCount are

received, they are presumed to be duplicate copies of the same transmission

containing the same business content. The recipient MUST only process one of

them, except that the recipient MAY choose to generate an administrative

response to the second message notifying the sender that it has transmitted

duplicate messages.

3.6 Globally unique identifiers

3.6.1 Types of QIDs
Each of the AdsML message formats contains several identifiers based on the

datatype format for qualified identifiers, the QIDType, which is defined in the

AdsMLTypeLibrary. These identifiers are called qualified identifiers (QIDs) because

their construction rules guarantee global uniqueness, and they are used as, for

instance, technical values which support the AdsML messaging “machinery” (e.g.

transmissionID, messageID and inResponseToMessageID, which are used to

uniquely identify AdsML messages, create handshakes between AdsML systems,

enable re-sending of messages, and guard against simultaneous updates) and

one or more business-significant QIDs which uniquely identify the information

being discussed in that message (e.g. QuotationIdentifier,

BookingIdentifier, PlacementIdentifier, MaterialsIdentifier, etc.).

(A variant of the QIDType is also used as the basis for the SchemaProfile

element and schemaProfile attribute, which are described later in this

document.)

3.6.2 Structural rules
The structural rules for an element or attribute based on the AdsML QIDType are

described in the AdsML Type Library specification and MUST be followed.

According to those rules, a sample QID value might look like this:

“myorganization.com:2005-01-01:1234567890.” The first part of the QID is an

internet domain name that was controlled by the organization generating the ID

at the time the message was created. The second part is a date on which the

domain name belonged to the organization issuing the ID. (The date in this

section does not have to be a current date. All QIDs issued by a given

organization can begin with the same domain name and date, provided that the

organization continues to control the domain name.) And the third part is a string

which the generating organization guarantees to be unique within the set of all

QIDs that share the specified domain name and date. This results in what should

be a globally unique identifier.

It is important to note that the third part of the QID format does not have to be a

meaningless or randomly-generated string. When creating a QID for a business

object (such as a booking or set of materials) for which the organization already

maintains an ID, the organization creating the QID can simply use their existing

ID as the third part of the QID string, provided that they can guarantee not to

use this same value in any other QID for the same purpose. Alternatively, the

organization can generate a unique string of any kind, for instance a Windows

GUID.

http://myorganization.com:2005-01-01:1234567890/

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 18 of 65

A QID SHOULD be treated by all parties as a unique string with no inherent

internal meaning, and SHOULD NOT be parsed or decomposed in order to extract

just a part of it for further processing. The AdsML message formats always carry

additional, optional structures to convey the business significant identifiers that

are actually used within each organization. (For example, the buyer‟s order

number, the seller‟s order number, the production house‟s artwork ID, or any

other identifiers that are used in the relevant business operations.) These are

called “Auxiliary References” and can be found in an element adjacent to an

element containing an AdsML QID. It is RECOMMENDED that organizations populate

the auxiliary references with the business significant identifiers that they actually

use in their day to day operations, so as to facilitate better communications

between trading partners.

3.6.3 Scope of uniqueness
When its structural rules are followed, the GUIDType format guarantees that

QIDs created by different organizations do not overlap. It is, however, up to each

organization to ensure that a QID is not reused as an identifier for different

objects, in different contexts. Ideally, a QID value should be unique across the

entire set of QIDs generated by a given organization. Therefore, in theory, a

messageID issued by an organization should never have the same value as a

MaterialsIdentifier issued by that same organization, which in turn should

never have the same value as a BookingsIdentifier issued by that

organization.

In reality, it is often necessary to limit the uniqueness of a business-significant

QID to a smaller domain. For example, an organization which does not internally

differentiate between a placement and an insertion may wish to use the same

value for both a PlacementIdentifier and the single InsertionIdentifier

within that placement. Or, the algorithm for generating bookings-related QIDs

may not be able to guarantee that they are unique compared to any materials-

related QIDs generated by the same organization.

However, none of these concerns can or should affect the values used for the

technical IDs, such as transmissionID and messageID, which enable the AdsML

machinery.

So the guidelines are:

 QID values used for an AdsML technical ID MUST be globally unique across

the entire set of technical QIDs generated by that organization

 All other types of QID values MUST be unique across the set of QIDs of that

specific type (i.e. used as identifier for a particular object, context and

purpose) generated by the organization, and SHOULD be unique across the

set of all QIDs generated by that organization if possible.

3.7 Validation

3.7.1 Overview: schema validation vs. programmatic
validation

The AdsML Framework provides a set of XML schemas and an associated

extension mechanism that can be used to define both the structure and (to the

extent possible using XML‟s schema facilities) the allowable information contents

of an AdsML message. The Framework also describes a PPA3 mechanism wherein

the PPA contains the set of computer-readable information that needs to be

available to an AdsML processor and that controls some aspects of its operations.

3 The machine-processable portion of the Trading Partner Agreement

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 19 of 65

There is a distinct overlap between the information content of an AdsML Schema

(including optional user extensions) and an AdsML PPA, since a user-extended

AdsML Schema is, in essence, a formalized part of a PPA.

So, for what purposes would one use an AdsML schema, and how does this relate

to a PPA? This section provides a brief, non-normative overview of how the AdsML

Technical Working Group expects that they will be used. It is followed by several

sections contain normative rules pertaining to validation of AdsML messages.

During production, an AdsML schema would normally be used for validation of the

structure and content of incoming AdsML messages, whether they are

AdsMLEnvelopes or messages conforming to one of the item-level e-commerce

standards. (Note that users are not required to use the AdsML Schema for this

purpose, provided that they implement validation by some mechanism that

achieves the same results.) For each type of information being exchanged, each

communications partner would set up a single schema that restricts the types of

information it is willing to receive. This schema (including user-defined

extensions) would be used to validate all incoming messages from all

communications partners.

Therefore, a trading partner‟s schema would not necessarily contain the same

schema extensions as those in the AdsML schemas that the communications

partners set up for their own systems, and communications partners would not

normally exchange their actual schemas or PPAs with each other. The only

business requirement is that the recipient of a message must be able to validate

every value and type of information sent by the sender, and therefore their

respective AdsML schemas must each permit these kinds of information to be

included in the messages that they exchange.

Schema validation of an incoming AdsML message is expected to be a front-line

operation that is performed as soon as possible after the message has been

received. It is not necessarily the only validation, however. Depending on the

recipient‟s business requirements, the software receiving this message may apply

additional validation and verification operations in order to ensure that the

contents of the message conform to its business rules and to the relevant PPA.

The PPA may contain rules that cannot be validated by AdsML schema processing

– for example, rules that are driven by the presence or absence of complex

combinations of metadata within the message. If the message recipient wishes to

validate against these rules, it will need to perform additional validation that is

driven directly by the PPA (or perhaps by another mechanism such as an XSLT

stylesheet) rather than by the AdsML schema.

On the outbound side, when creating an Item and then addressing it, both the

AdsML Item Creator and the AdsML Item Redirector4 must have access to

relevant PPA information about the agreement between the sender and the

intended recipient of this information. For example, the encryption and encoding

put in place by the Item Creator must be acceptable to the Item Content

Unpacker that will eventually receive it; similarly, the types and XML formats of

the information must be acceptable. Even though the user may have created an

AdsML schema for validation of incoming messages that contains all of this

information and is machine-readable, and therefore could also be used to drive

outbound processing, the format of an AdsML schema is not optimized for this

kind of use. Therefore, we expect that implementers of AdsML systems will design

their own information format for storing the PPA content, even though much of

that content is also available in the AdsML schema.

4 Both the “AdsML Item Creator” and “AdsML Item Redirector” are components of an AdsML Processor,
as described in AdsML Envelope Processing Model, Usage Rules & Guidelines.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 20 of 65

During system setup and testing, users may use their AdsML schema to validate

outbound messages that they are about to send to a communications partner, in

order to ensure that their system is functioning properly and generating the

correct message structure and content. However, it is expected that once a

system goes into production, the need for such outbound validation will have

greatly diminished and most users will remove this step from their message

creation process.

To summarize: the AdsML schema is intended to be used for inbound validation;

because it is machine processable it could also be used by the outbound Item

Creator, but the implementer is free to provide this information to the Item

Creator in other ways.

3.7.2 Validation rules

3.7.2.1 Validation and Schema Location

A trading partner MUST NOT send any invalid AdsML messages. However, use of

XML Schema based validation of production messages in runtime is OPTIONAL.

Systems are allowed to use any available approach to ensure that their output is

valid.

For production messages, a schema location SHOULD NOT be given in document

instances using the xsi:schemaLocation attribute. Systems are REQUIRED to be

able to identify which schema a particular document instance belongs to by

reading the mandatory adsml:schemaVersion attribute.

3.7.2.2 No empty values for elements and attributes

All elements and attributes that appear in an instance MUST take a value, i.e. are

not allowed to be empty. The only exception to this is the case of elements which

are defined with an empty content model or where the presence of the attribute

xsi:nil=“true” on an element indicates that the value of the element in

question is missing or unknown.

3.7.2.3 Fixed and Default values

All fixed or default values specified for elements or attributes in the schema MUST

be present in an XML document instance conforming to that schema; schema

validation and the post-schema-validation infoset (PSVI) SHOULD NOT be relied

upon in order to make fixed or default values available for processing.

This restriction is imposed so that a particular mode of validation (XML Schema

validation and the PSVI) is not relied upon to ensure that all data content of a

message is present in an instance messages. This allows for non-XML Schema

validation of an instance.

This constraint is enforced in the schema by specifying attributes that carry fixed

values with a 'use' of required, by not specifying default values, and by the policy

that element content should not be empty in instances.

3.8 Sequence of elements
The sequence of elements in an AdsML message is not significant. An AdsML user

MUST NOT use element sequence to imply e.g. parent/child or anchor/reference

relationships, etc.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 21 of 65

3.9 Customization and extensions
An AdsML user MUST only extend the lists of allowable values for elements and

attributes in an AdsML message by means of the extensibility mechanisms that

are defined in the relevant AdsML standard.

An AdsML user MUST only define custom Properties for use in an AdsML message

by means of the mechanisms for doing so that are defined in the relevant AdsML

standard.

An AdsML user MUST NOT extend the structure or contents of an AdsML message

in any way other than those defined in the relevant AdsML standard.

3.10 Internationalization
As an XML-based technology, AdsML provides support for Internationalization in

line with that provided by XML. Dates and times in AdsML are recorded in ISO

8601 Extended Format using the built-in XML Schema data types for date and

time, xs:dateTime. Language is recorded as a string conformant to RFC 1766

(See Section 9 References) using the built-in XML Schema data type for

language, xs:language. AdsML supports character sets that conform to ISO/IEC

10646.

3.11 Security and encryption
The AdsML Item-level standards define XML message formats that can be used to

transmit many kinds of sensitive information, from invoice and payment totals to

advertiser‟s credit card details. Users and implementers of AdsML systems should

be aware that XML is inherently human-readable, and so sensitive data such as

credit card details can potentially be read in transit.

It is the responsibility of organizations sending and receiving AdsML messages to

ensure that the messages are suitably protected and/or encrypted while traveling

between the sender and the recipient. This is normally accomplished at a “higher

level” than the AdsML business message, for example, by encrypting the envelope

or channel within which the message travels. The AdsML Item-level standards are

designed to work successfully within such an environment, but do not themselves

provide any special mechanisms or instructions for implementing the necessary

security.

4 E-commerce messages
Note: The information in this section applies only to the AdsML item-level

standards; it does not apply to the AdsMLEnvelope standard.

4.1 Categories of messages
An AdsML e-commerce message represents an exchange between two parties in

the advertising business chain. They can be of two kinds: business-significant

messages, and administrative responses.

4.1.1 Business-significant messages
Business-significant messages directly affect either the information stored in a

company‟s systems or its normal workflow processes. Messages in this category

typically fall into one of four sub-categories:

i. Request for action or information

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 22 of 65

ii. Provision of information or content, including additional or corrected

information

iii. Confirmation that an action has been carried out

iv. Indication that a requested action cannot be carried out, either

because of business constraints (e.g. “The date you want is not

available”) or because the message requesting the action contained

insufficient information (e.g. “You failed to specify the publication

date”)

Many e-commerce interactions consist of exchanges of two or more business-

significant messages following pre-set patterns. For example, when a buyer of

advertising sends a message to a seller of advertising requesting a Booking (“AD-

O”), the publisher will in due course respond with a Booking Response message

(“AD-OR”) that either accepts the Booking or indicates that it could not be

accepted. Both of these are business-significant messages, because they have a

direct impact on the data stored in each party‟s systems.

Other types of business-significant messages include status enquiry messages

and the responses to those enquiries, and business-level exception messages

indicating a failure to carry out a requested action. Status enquiry messages are

business-significant because they are triggered by and interact with normal

workflow processes. Business-level exception messages typically fall into the

category of “You didn‟t give me enough information, so I am unable to process

your order.” They represent an exception to normal processing, but they are not

error messages, and they, too, directly impact business workflows.

NOTE: AdsML does not assume that the exchange of business-significant

messages will occur in any particular timeframe. As discussed in the section on

asynchronous messaging, substantial time may elapse between the sending of a

given message and the receipt of its business-significant response.

4.1.2 Administrative responses
Administrative responses are replies to business-significant messages that do not

directly affect business information or workflow processes. An administrative

response indicates that “Your message was received” and whether it contained

technical errors.

Every business-significant AdsML message SHOULD be replied to first with an

administrative response, and then, if appropriate, with a business response to

that message.

In situations when no business-significant message would be appropriate, the

administrative response serves to terminate the message exchange sequence. For

example, when a buyer of advertising receives a Booking Response message

(“AD-OR”) containing the business-significant information, “Your order has been

accepted”, no further business-significant message is necessary. Both parties

have recorded the booking in their systems. However, in most environments the

buyer of advertising will send an Administrative Response back to the seller of

advertising stating that the seller‟s AD-OR message had been received. This

provides a “handshake” that closes the e-commerce loop, and assures both

parties that the transaction has been recorded in both of their systems.

4.1.2.1 Processing rules

In a typical AdsML architecture, the Administrative Response message may be

generated by an AdsML message processor or generic e-commerce gateway

before the business information in the incoming message is loaded into the

recipient business application (e.g. a buying system, sales system, production

system, etc). The Administrative Response message SHOULD be sent immediately,

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 23 of 65

and its content MUST be based entirely on technical validations. Later the business

application may, if appropriate, send a business-significant response which

reflects the results of further processing and business-specific validations. This

response will be conveyed in a primary AdsML message as defined in the

Advertisement Components Interaction Analysis, e.g. an AD-OR Order Response

or an AM-MR Ad Material response, rather than an Administrative Response.

Similarly, when an Administrative Response is received by the trading partner

that sent the original business message, it may well be processed by that party‟s

AdsML message processor or generic e-commerce gateway. In this case the

contents of the Administrative Response may never reach the business

application that generated the original AdsML message or the business people

who use that application.

The AdsML Administrative Response messages are designed to support this

architectural approach. The information contained in an Administrative Response

MUST be based entirely on a technical analysis of the incoming message and MUST

NOT convey business information that needs to reach the business application or

business users who sent the message to which it is a response.

4.1.3 Message codes and structures
The AdsML Framework assigns a unique code for each type of business message,

including business-significant “response” and “receipt” messages. Each AdsML

business message is identified by a message code that specifies whether the

message is, for instance, an ad order, an ad order change, a materials delivery,

or responses to these messages.

The message type of a business-significant message is expressed as a code value

in the messageCode attribute in the header of the message, and its structure is

determined by use of an element which has the same name as the type of

message in question, in a schema CHOICE near the root of the message

structure. (For example, an Ad Order message is always assigned a message

code of “AD-O” and its structure is determined by use of the AdOrder element in

the schema.) The message type names and code values are defined in the

Advertising Component Interactions Analysis within the AdsML Framework.

When a business-significant message is sent in response to another AdsML

message, the message code of the incoming message that triggered this response

is conveyed in the inResponseToMessageCode attribute in the response

message‟s header. For example, the response to a new order and the response to

a request to cancel an order are both conveyed in “AD-OR” (order response)

messages, but their inResponseToMessageCode values will be “AD-O” (new

order) and “AD-OX” (cancellation request), respectively. The presence of this

attribute value in all response messages enables recipients more easily to route

and process incoming response messages based on the type of request to which

they are a response.

An AdsML administrative response message is always assigned the same

messageCode as the message to which it is a response, but it uses a different

structure. In this case a separate attribute, messageClass, identifies that it is an

administrative response rather than a business message. The structure of

administrative response messages is defined by use of the

adsml:AdministrativeResponse element, rather than the element (such as

AdOrder in the example above) which defined the structure of the business-

significant message to which it is a response.

To summarize:

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 24 of 65

A business-significant message MUST be assigned the messageCode value defined

for that type of message in the Advertising Components Interactions Analysis, it

MUST use the structure defined by the element whose name most closely matches

the name for that type of message, and its messageClass MUST be

“BusinessTransaction”.

An administrative response message MUST have the same messageCode value as

the business-significant message to which it is a response, its structure MUST be

based on the adsml:AdministrativeResponse element, and its messageClass

MUST be either “MessageReceivedAcknowledgment” or “TechnicalError”.

4.1.4 ZZ-Error responses to catastrophic errors
A special type of Administrative Response message is the “ZZ-Error” message.

ZZ-Error messages are used for handling catastrophic errors where it is not

possible to respond with an error message of the same Type (perhaps because

the Type of the incoming message has been omitted or become corrupted).

Structurally, a ZZ-Error message is identical to any other administrative

response; however, its messageClass is always “TechnicalError” and its

messageCode is always “ZZ-Error”. The body of the message can then be used to

provide more information about the error that occurred.

4.2 Message Choreography
In order to ensure interoperability, it is essential that systems exchanging AdsML

item-level messages have the same view on which messages to send, and which

to expect to receive.

The Advertising Component Interactions Analysis defines all of the messages that

are within scope for AdsML, and for each one, indicates the type of business

response message that a recipient of such a message would normally be expected

to send (for example, whether they should issue a Response). However, it does

not stipulate the sequence in which these messages should be exchanged.

The AdsML message choreography described here takes the next step, by

categorizing the types of messages defined in the Advertising Component

Interactions Analysis and providing a set of recommended patterns for

exchanging them. These choreographic guidelines apply equally both to users of

AdsML Item-level message formats such as the AdsML Bookings and Materials

standards, and to users of other, non-AdsML formats such as IfraAdConnexion.

Many of the AdsML e-commerce standards go further, in that for each type of

message that can be exchanged, they specify a detailed set of choreography

patterns. Please see each standard‟s documentation for further information about

that standard‟s recommended or required choreography.

These recommendations apply only to the Item-level messages that are

exchanged between the trading partners‟ software systems. They do not apply to

the use of the AdsML Envelope. Message exchange patterns for the AdsML

Envelope are defined in Envelope Processing Model, Addressing and Operational

Conformance.

4.2.1 Request-response vs. datagram

communications
The preferred messaging model for all AdsML e-commerce communications is the

Request-Response model as described below.

However, since legacy applications may have limited ability to receive or generate

e-commerce messages, it is also possible to use a model where only requests and

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 25 of 65

possibly administrative responses are transmitted, assuming an acceptance on

the receiver‟s side. If a problem occurs when a message cannot be accepted, it

has to be solved manually. This kind of model is called a datagram model.

Typically, datagram communications are implemented because only one of the

two communicating parties is capable of receiving e-commerce messages and

automatically entering them into a workflow. (In practice, it is usually easier for a

legacy application to transmit an e-commerce message than to receive one.) In

such cases, the parties may implement datagram communications in one

direction: from the party that is less capable of receiving e-commerce messages,

to the party that is more capable of receiving them. It is also possible for

communications partners to implement bilateral datagram communications,

where some classes of messages (for example, ad orders, changes and

cancellations) are sent as datagrams in one direction, and others (for example,

order status messages) are sent as datagrams in the other direction. Parties

wishing to use the datagram model must agree on which direction(s) of datagram

messaging they will support.

As a summary:

1. Implementations of AdsML e-commerce standards SHOULD apply the full

Request-Response model

2. If agreed by communication parties, implementations MAY use a datagram

model (no business level responses required), and if so, they must also

agree on which direction(s) of datagram messaging they will support.

In both cases, the ability to send an Administrative Response is considered a

fundamental capability of an AdsML-compliant system that SHOULD be supported.

4.2.1.1 Request-Response pattern guidelines

The following guidelines for the exchange of Item-level messages following the

request-response model are strongly RECOMMENDED:

1. Each message exchange begins with the transmission of a business-

significant message from one partner to another. The nature of the

recipient‟s response depends on whether the incoming message contains

technical errors, and if not, whether a business-significant response

message has been defined for it.

2. Each incoming business-level message should cause its recipient to

generate an Item-level administrative response message back to the

sender of the incoming message, according to the following guidelines:

o If the incoming message contains a technical error, the response

to that message should be of the same message type as the

incoming message, but with a Message Class of “TechnicalError”.

 For example, the response to an incoming “AD-O” ad order

message that contains a technical error should be another

“AD-O” message with a Message Class “TechnicalError”.

o Otherwise, the response should be of the same message type as

the incoming message, but with a Message Class of

“MessageReceivedAcknowledgement”.

(Note that an administrative response MUST be sent if the

administrativeResponseRequired attribute in an incoming

business-level message has a value of “true”.)

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 26 of 65

3. With the exception of broadcast or response messages (see “Categories of

message patterns”, below), each incoming business-significant message

should cause its recipient eventually to generate a business-significant

response message back to the sender of the incoming message, according

to the following guidelines:

o If the Advertising Component Interactions Analysis defines one or

more possible business-significant responses to the incoming

message, then the response should be one (or in a few cases two)

of the business-significant message Types shown in the ACIA

document as a possible response. For example:

 The only business-significant response to an incoming “AD-

O” (ad order) message is an “AD-OR” (ad order response)

message.

 The only business-significant response to an incoming “AD-

OSE” (ad order status enquiry) message is an “AD-OS” (ad

order status) message.

o The incoming business message is identified using the

“inResponseToMessage” message attributes of the business-

significant response:

 The unique message identifier for the incoming message

may be recorded as the value of the

inResponseToMessageID attribute.

 The unique message code (e.g. “AD-O”) for the incoming

message may be recorded as the value of the

inResponseToMessageCode attribute.

Note: a business-significant response is either a „Response‟ or a

„Status‟ message. The “inResponseToMessage” attributes are

required in a „Response‟ message. In a „Status‟ message the

attributes are optional; a „Status‟ message can be broadcast and

is not always requested, therefore.

o If no business significant response has been defined for the

incoming message, then the response should be an administrative

response. This is accomplished by returning a message of the

same Type as the incoming message, but with a Message Class of

“MessageReceivedAcknowledgement.”

 For example, since no business-significant response is

defined for it, the normal response to an “AD-OR” (ad

order response) message is an Item-level response of type

“AD-OR” with message class of

“MessageReceivedAcknowledgement”.

4. An incoming administrative response message must not be responded to

with another AdsML message.

o If an administrative response message itself contains a technical

error, this should be reported to its sender by non-AdsML means

(i.e. phone or email).

5. If an incoming business-significant message contains an error but it is not

possible to respond with an error message of the same Type (perhaps

because the Type of the incoming message has been omitted or become

corrupted), the recipient should return a “ZZ-ERROR” message instead.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 27 of 65

o For example, the response to an incoming message that could not

be processed should be an administrative response with Message

Code “ZZ-ERR” and Message Class “TechnicalError”.

6. A message recipient MUST NOT continue the normal message exchange

pattern once a message containing a technical error has been received.

4.2.1.2 Datagram pattern guidelines

The following guidelines for the exchange of Item-level messages following the

datagram model are strongly RECOMMENDED:

1. Each message exchange begins with the transmission of a business-

significant message from one partner to another. The nature of the

recipient‟s response depends on whether the incoming message contains

technical errors.

2. Each incoming business-level message should cause its recipient to

generate an administrative response message back to the sender of the

incoming message, according to the following guidelines:

o If the incoming message contains a technical error, the response

to that message should be of the same message type as the

incoming message, but with a Message Class of “TechnicalError”.

For example, the response to an incoming “AD-O” ad order

message that contains a technical error should be another “AD-O”

message with a Message Class “TechnicalError”.

o Otherwise, the response should be of the same message type as

the incoming message, but with a Message Class of

“MessageReceivedAcknowledgement”.

(Note that an administrative response MUST be sent if the

administrativeResponseRequired attribute in an incoming

business-level message has a value of “true”.)

This ends the datagram message exchange.

4.2.2 Categories of message exchange patterns
Message exchange patterns typically fall into four categories, each of which is

described below. The category within which a given message is used will affect

the normal response to that message. Instances of these meta-patterns can be

found throughout the AdsML Framework.

4.2.2.1 Transaction

In a business transaction, one party initiates an exchange of information about a

transaction, and the other responds. This includes requesting a transaction,

changing or canceling a transaction, or enquiring about the status of a pending

transaction. Transactions include both ordering transactions (reservations,

bookings, production orders) and payment transactions (an invoice followed by

either a payment or a claim concerning the invoice).

At least two business-significant messages will normally be exchanged: an initial

message conveying the details of the requested action, and a business-significant

response confirming the action.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 28 of 65

In this category the request-response mode is strongly preferred. The datagram

model is only used when necessary to integrate legacy systems that are not

capable of supporting the request-response model.

4.2.2.2 Delivery of material

One party delivers a set of business-significant material to the other. Usually this

material was (or will be) referenced by a transaction. For example, ad material is

business-significant because it will be referenced by a production order,

reservation or booking.

A message delivering materials should trigger a business-significant “response”

message, but in many systems the datagram model is used for deliveries.

4.2.2.3 Broadcast information

One party “broadcasts” information to one or more recipients that is not

referenced by a transaction and for which no response is necessary. For example,

routine publication of an updated Mediapack, or monthly generation of account

statements.

Broadcast messages always follow the datagram model: only an administrative

response is expected.

4.2.2.4 Status reporting

One party provides information to one or more recipients about the status of a

pending transaction or delivery. Sometimes this information is provided as a

response to a request for status information; in other cases it is provided

spontaneously based on internal business rules.

Status reporting can follow either the request-response or datagram model,

depending on whether the status information was requested or provided

spontaneously.

4.2.3 Support for the message exchange patterns
The AdsML Framework includes three components that can be used to define and

support the recommended Item-level exchange patterns:

1. The names and descriptions of the messages described in the body of the

Advertising Components Interactions Analysis and repeated in the table in

the Appendix of that document. With one exception (“ZZ-ERROR”), the

defined AdsML message types consist entirely of business-significant

messages.

2. The “Possible business-level responses” that are indicated for each

message in the table in the Appendix of the Advertising Components

Interactions Analysis. This column of information tells you what the normal

business-significant response to a given message is expected to be. If no

business-significant response is indicated for a message, then the normal

response to that message is expected to be an administrative response.

3. The “message class” flag in the Item Header section of the AdsML

Envelope. This flag permits an AdsML Item-level message to be identified

as containing one of the three classes of information described above:

o Business-significant (“BusinessTransaction”)

o Acknowledgment (“MessageReceivedAcknowledgement”)

o Error (“TechnicalError”)

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 29 of 65

4.2.4 Integrating “manual” messages into the AdsML
choreography

The AdsML choreography assumes that all of the defined business messages are

transmitted as AdsML messages. Therefore, the standards include rules about

many of the specific data values that should be copied, for example, from a

“request” message to a “response” message.

However, it is understood that given the state of existing systems, in most

environments AdsML will initially be used for just some of the defined messages,

leaving the rest of the business interactions to be accomplished by “manual”

processes such as phone, fax or email. For example, a buyer of ad space might

phone in the details of a new booking, expecting the seller of ad space to type the

information into their system and then send an AdsML message as a

confirmation. Or, AdsML messages might be used to convey the details of a new

booking, but then the buyer might telephone with requested changes.

In general, it is possible to accommodate scenarios like these in which AdsML

messages must be integrated with other forms of information transmission. The

most common approach is to use the datagram model, which generally supports

using AdsML messaging for the initial (request or broadcast) message, and non-

AdsML communications (e.g. phone, fax or email) for any response to that

message.

It is also possible to use AdsML messaging in other patterns, for example,

sending an AdsML message in response to a non-AdsML request. However, there

are a number of constraints in the AdsML message designs which limit your

options when trying to support this “backwards” approach. These include:

 An AdsML business-significant “response” message MUST reference the

transmission ID of the message to which it is a response.

 AdsML “response”, “change” and “status” messages MUST include a

globally unique, persistent ID (using the AdsML “QID” format) for the

transaction or information in question. Therefore, these message types

can only be used to reply to a manual message if it is acceptable for the

party sending the message to generate this unique ID, or if the incoming

information already included a suitable unique ID.

 A “change” message will normally generate a “response” message in

return.

 A “status” message does not trigger a business response.

As a result of the above constraints, the following options are recommended

when responding to a non-AdsML request for a new transaction, or a change or

cancellation to an existing transaction.

 New Transaction

o Send a Status message confirming the transaction and providing

the seller‟s ID for that transaction to the buyer.

 Change or cancellation

o Send either a “status” message confirming the changes to this

transaction that have been made in the seller‟s system (no

response expected), or a seller-initiated “change” message

(response required).

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 30 of 65

4.3 Message contents

4.3.1 Change messages
Each AdsML change message (for example, “change a reservation”, “change a

booking”, “change a delivery order”, etc.) consists of a copy of the entire

transaction that is being changed, as it will exist after the change has been

confirmed5, along with optional information to describe the nature of the change

and indicate the sections of the transaction that have been changed. This design

makes it easy for the message sender to generate the message (it is essentially a

copy of the current state of this transaction in their system). The recipient of the

message can either perform a parse-and-compare operation in order to identify

just the changed sections and update their system accordingly, or can push the

new information set into their system “as is” without choosing to parse it in such

detail.

We have chosen this approach in favor of the most commonly used alternative

model, which would have been to transmit a much smaller change message

containing just the changed information. Our primary reasons are:

 Earlier e-commerce message formats were designed at a time when

message transmission was expensive, so a premium was placed on

reducing the number of bytes in each message, for example by sending

only the changed data. Transmission costs have dropped to the point that

within the context of a textual business message such as an AdsML

message there is no significant cost difference between sending a larger

vs. smaller message.

 The nature of the information being transmitted has become much more

complex and interrelated, not only within the messages, but more

importantly, as reflected in the database structures maintained by the

communications partners. A given AdsML message is likely to contain just

a fraction of the information about this transaction that is stored in each

party‟s database.

 It is safer and less expensive for the initiating party to re-send the entire

transaction than to parse out just the “changed” sections. Further, the

sender cannot reliably know which aspects of a changed transaction might

be significant to the message recipient, or how the components of that

transaction are stored in the recipient‟s system.

 It is safer and more reliable for the recipient to receive a copy of the entire

message, and perform any necessary analysis on their side, than to

receive just those sections of the message that the sender has assumed

will be significant.

 Receiving a full copy of the entire order also allows systems designers the

option of easily displaying a complete new order for manual comparison

with an existing order – rather than designing complex software to do so.

4.3.1.1 Identifying what has changed

Each AdsML change request message (for example, an Ad Reservation Change or

Ad Order Change) contains an optional, repeatable adsml:ChangeSpecification

element in its header. This structure can be used both to indicate the nature of

the change(s) that have been made, and to identify the section(s) of the

transaction in which they occurred.

5 Note, in particular, that any parts of the transaction which have been flagged as deleted in the
sender‟s system are also omitted from the change message.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 31 of 65

The change specification structure is both generic and extremely flexible, in that

both of its main components (a CodeValue and a ChangeLocatorReference) are

optional and repeatable. In order to encourage consistency and interoperability

between implementations, the following guidelines are RECOMMENDED:

 For each section of the transaction that has been changed, the change

message header should include an adsml:ChangeSpecification element

which indicates the nature of that change (via a code value) and identifies

the section in which the change occurred (via a

ChangeLocatorReference).

 Each instance of adsml:ChangeSpecification should include a code

which indicates the nature of the change being described by that change

specification. The code should take the form “verb.object”, where the verb

is either “add”, “delete” or “edit” and the object is either the name of the

structure in which the addition, edit or deletion took place, or a word

which indicates the type of information which was added, edited or

deleted. For example: “add.placement”, “delete.rendering”,

“edit.schedule”, “add.price”, etc. Use of the AdsML Change Code controlled

vocabulary is recommended for this purpose.

 Each instance of adsml:ChangeSpecification should include a

ChangeLocatorReference which contains a QID value that matches (and

therefore serves as a pointer to) the identifier of the lowest-level element

in the message that contains the portions of the message in which the

change occurred. For example:

o If the change occurred in a placement in an ad order, then the

ChangeLocatorReference should contain a copy of that

placement‟s PlacementIdentifier.

o If the change affected only a single insertion period within a

placement, then the ChangeLocatorReference should contain a

copy of the ScheduleEntryIdentifier of that InsertionPeriod,

because InsertionPeriod is a lower-level containing element than

its parent Placement.

o If the change affected a placement‟s price, then the

ChangeLocatorReference should identify the appropriate

PlacementIdentifier. However, if the change affected the price of

an entire booking, then the ChangeLocatorReference should point

to the BookingIdentifier.

 If a change consists of a section of the transaction that has been deleted,

then the change code should describe the nature of the change (e.g.

“delete.placement” or “delete.schedule”) and the

ChangeLocatorReference should identify the structure in which that

deletion occurred, or that was itself deleted from the transaction. For

example, if an entire placement has been deleted from an ad order, then

the ChangeLocatorReference should contain the PlacementIdentifier of

the deleted placement, even though that placement no longer exists in the

change message.

 The contents of any given adsml:ChangeSpecification element should

describe a single change or a related set of changes that are all in the

same section of the message. For example:

o If two different placements in an Ad Order have been changed,

then the change message should include two

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 32 of 65

adsml:ChangeSpecification elements, each of which describes

one of the changed placements.

o If a single date has been changed or cancelled, then the change

message should include one adsml:ChangeSpecification element

with an appropriate code and a pointer to the

ScheduleEntryIdentifier of the changed InsertionPeriod..

o If a series of schedule changes have been made in a placement,

then the change message should include one

adsml:ChangeSpecification element which includes a single code

with a value of “edit.schedule” and a ChangeLocatorReference

that points to the identifier of the placement in which these

schedule changes occurred.

4.3.2 Business Response vs. Status messages

4.3.2.1 Response messages

The AdsML Framework includes many business-significant messages which have

the word “Response” in their names: Ad Order Response, Ad Materials Response,

etc. Response messages are used to provide the business-significant response to

a particular incoming message. For each incoming message (such as Ad Material),

one and only one business-significant Response message (such as Ad Material

Response) SHOULD be sent. The Response message should be sent as soon as

reasonably possible, even if further processing remains to be done before the

recipient‟s final position will be known. The Response message SHOULD always be

sent to the party that originated the message exchange (in this case, the sender

of the Ad Material), and only to that party. A response message MUST identify the

message to which it is a response in the adsml:inResponseToMessageID

attribute. A response message MAY identify the message code of the message to

which it is a response in the adsml:inResponseToMessageCode attribute.

4.3.2.2 Status messages

The AdsML Framework also includes many messages which provide status

information about a previously initiated transaction or delivery. These have the

word “Status” in their names: Ad Order Status, Ad Materials Status, etc. Status

messages can be used either as the reply to an incoming Status Enquiry

message, or as a broadcast message sent to one or more parties that did not

explicitly request the information. Depending on the use, the metadata in the

header of the message is filled in slightly differently.

When a Status is issued as a reply to a Status Enquiry, then only one instance of

the Status message SHOULD be sent, and its header MUST identify the Status

Enquiry to which it is a reply in the adsml:inResponseToMessageID attribute. It

MAY also record the message code of the Status Enquiry in the

adsml:inResponseToMessageCode attribute. This is analogous to the use of

Response messages as described above.

When a Status message is sent spontaneously in broadcast fashion, however, it is

typically used for one or both of these purposes:

o provide further information to the initiator of a transaction or delivery after

having previously sent them a Response message

o provide information about a transaction or delivery to a party that was not

a participant in the original message exchange.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 33 of 65

When a Status message is used to provide subsequent information to the

transaction initiator, it is treated as a sort of “follow-up Response” – that is, it is

sent by the same party which originally sent the Response message, to the other

party in that transaction. When a Status message is sent to other parties, it

serves as a form of “carbon copy” message, similar to the cc list in an email

distribution. In both of these uses, the Status message is treated like a datagram

and MUST NOT include a value in its adsml:inResponseToMessageID attribute.

4.3.2.3 Usage examples

Status and Response messages belonging to the same group (for example, Ad

Order Response and Ad Order Status) typically have almost identical structures

and can convey the same business information. It is possible to send a Response

message to one trading partner in reply to an incoming message from them, and

simultaneously to send a Status message containing essentially the same

information to other trading partners who are likely to be interested in that

information (or who are obligated to receive it by virtue of a trading partner

agreement).

For example, consider this scenario:

 A delivery agency transmits a set of ad materials to a publisher in the form of

an AM-M (Ad Materials) message.

 Immediately the publisher discovers a problem with the way the materials

were prepared. The publisher sends an AM-MR (Materials Response) message

to the deliverer containing the publisher‟s formal response, as required by the

AdsML choreography in request-response mode. The AM-MR message

includes a description of the problem.

 Simultaneously, the publisher sends an AM-MS (Ad Material Status) message

containing the same information to the producer of the ad materials, so as to

ensure that the producer learns of the problem as quickly as possible, without

having to wait for the deliverer to inform them.

In theory, the publisher might have sent a duplicate copy of the AM-MR message

to the producer, but that would have violated the AdsML Framework rules,

because an AM-MR must only be sent in response to an AM-M message. Since the

publisher had not received the AM-M from the producer, the publisher therefore

must send the producer an AM-MS message instead.

4.3.2.4 Contents of status and response messages

In general, the structure of an AdsML status or response message closely mirrors

the structure of the main message in its message group, with the addition of

status codes at the top of the message and next to significant structures within it.

It is therefore possible to include in a status or response message all of the

information that was in the earlier message to which it refers. However, including

so much information in a response or status message is not always possible or

desirable. Each individual AdsML e-commerce standard provides its own

guidelines as to how much information should be included in a status or response

message conforming to that standard.

Status information is conveyed in the optional adsml:Status element, which

contains a Status code and an optional, repeatable StatusQualifier code that

can provide more information about the status.

The adsml:Status structure is available at the top level of each appropriate

AdsML transaction message (thus, providing status information about the

transaction as a whole), and also in each significant lower-level structure inside

the message (thus, providing status information about the information or sub-

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 34 of 65

transactions described at those lower levels.) For example, a Materials Delivery

Response message (AM-MR) contains status information both at the top level,

and also in the Rendering and Delivery structures. This allows for a status report

which conveys both a “high level” status of the material delivery as a whole, and

also “drill-down” statuses for lower level components such as each rendering and

each individual delivery transaction.

Because the AdsML status mechanism is so flexible, it is important that trading

partners who are setting up AdsML communications agree on how they will

convey status information: which types of codes and other information will be

provided, at which levels of each message, and under what circumstances.

The following guidelines are RECOMMENDED:

 Trading partners should populate the adsml:Status code with values from

the AdsML Status Code controlled vocabulary. This vocabulary is designed

to provide generic, context-independent status code values that can be

used at any level in any type of AdsML message. (For example,

“Received”, “Accepted”, “Rejected”, and “BeingProcessed”.) In this way, it

can provide a degree of interoperability across the entire AdsML message

set, whether one is describing a booking, placement, delivery, rendering,

etc.

 Trading partners wishing to provide more detailed, context-specific status

information should use the StatusQualifier code for that purpose. For

example, this would be the place to convey the reason for a status code of

“Rejected”, or the processing stage that the item or transaction in question

has reached.

 If any status information appears in a message, then the highest-level

status code in that message should be populated. In other words, users

should not convey status information at lower levels of a message while

leaving the top-level status code blank.

 The value of the highest level status code in a transaction should convey

the overall status of that transaction, i.e. the sum of its parts. In cases

when the lower level components of the transaction have mixed statuses,

it is up to each trading partner to decide how to summarize them into a

single top-level status. However, the guiding principle is that the top-level

status should reflect the “lowest” or “worst” status of any sub-transaction

in the message. For example, the response to a materials delivery in which

one rendering has been approved but another is still being processed

should indicate that the delivery is “BeingProcessed”.

See the individual AdsML e-commerce standards for more information about how

the status mechanism is intended to be used in that particular standard.

4.3.2.5 Importance of status messages

AdsML does not impose a requirement that the recipient of a Status message

perform any particular action as a result of receiving that message, including

reading it. Trading partners wishing to use status messages for more important

purposes should agree in advance on the situations in which they will send Status

messages and the behavior that the receipt of a status message is expected to

trigger.

4.3.2.6 Date of status and status enquiry messages

It is not possible to request status information as of a particular date. A status

request is always for the “current” status.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 35 of 65

There may be a delay before the recipient of a Status Enquiry is able to respond

to it. In all cases, the status information reported in a Status message should

reflect that message‟s business significant date, which is not necessarily the time

at which the status request was made.

4.3.3 Multiple business objects in one message
Each of the Item-level standards allows for the transport of multiple business

objects within the same AdsML message, provided that they are all of the same

message type (as defined in the Advertisement Component Interactions

document). For example, an AdsMLBookings instance can include one or more

business messages, or “bookings”, of the same type, i.e. a set of orders or a set

of cancellations etc.

It is not permitted to mix different types of business objects in the same

message, for example a “new order” and a “change” in the same message.

4.3.4 “Informational” structures
Many of the Item-level standards contain structures whose names end with the

word “Information” and begin with the name of a type of information that

originated in a different AdsML specification, for example, BookingInformation

and ProofOfPublicationInformation in AdsMLFinancials. These informational

structures are designed to convey information from an earlier point in the

advertising workflow which is useful, but not critical, to the current transaction.

For example, the ability to convey BookingInformation in an Invoice or Materials

Delivery message may help the recipient of the message match the incoming

Invoice or Ad Materials with its source booking. This can be very helpful, but the

Invoice or Materials would still have been delivered even if the

BookingInformation had been omitted from the message.

Each informational structure consists of an assemblage of optional elements that

are reused from their source schema. The general philosophy when designing

AdsML‟s informational structures has been to include every element which might

possibly be useful on an informational basis at a later stage of the workflow.

Therefore, the informational structures are likely to contain many more elements

than are required for any given context.

Further, by their very nature, the contents of an informational structure come

from upstream in the workflow, often from another system than the one which

generated the current message. This information may be incomplete or out of

date. As a general rule, informational structures SHOULD NOT be relied upon to

contain actionable information in the current context. Instead, they SHOULD be

used in such a way that the current transaction will not break if there are gaps or

errors in the informational content, or if the entire informational structure is

omitted by the message sender.

4.4 Multilingual content

To support internationalisation, AdsML messages permit human-readable textual

content to be repeated and provided in as many different alternative languages

as necessary to support multilingual business environments.

Multilingual support is technically provided by the specification of

internationalization attributes (i18nAttributes group) on many of the elements

containing human-readable text6. The group contains optional xml:lang, dir and

6 Elements containing human-readable text that is commonly used to identify the object in question
have not been internationalized.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 36 of 65

source attributes and appears in many element contexts where human readable

content is contained. For example: a description, disclaimer text or a property

label. The xml:lang and dir attributes identify the human language used and the

direction in which it should be read, e.g. „ltr‟ (i.e. „left to right‟). While the „lang‟

and „dir‟ attributes are typical i18n attributes, „source‟ serves a subtly different

purpose. In the case where multiple human language variants of a text are

available, the source attribute is used to identify the text in the original or source

language. For example, if a description was originally produced in Finnish, and

Swedish and English translations are also provided for it, then the Finnish

description could be marked as „source‟:

<adsml:RateCode>

 <adsml:CodeValue>P3</adsml:CodeValue>

 <adsml:Description xml:lang="fi" adsml:source="true">3.

kansi</adsml:Description>

 <adsml:Description xml:lang="sv">3 pärm</adsml:Description>

 <adsml:Description xml:lang="en">Cover 3</adsml:Description>

</adsml:RateCode>

The i18n attributes are optional. The attributes are specified on structures in the

AdsML Type Library and in individual standards in the AdsML Framework. Due to

the re-use of AdsML Type Library structures across all schema files there may be

contexts where i18n support has been provided even though it is not appropriate

or necessary to use that i18n support. Examples of this include:

 AdsMLMediaPack standard: the human language used within a

Publication‟s DescriptiveInformation would be specified at the

DescriptiveInformation level, rather than on individual elements

contained inside it, even though the child adsml:Description element

also contains i18n support.

 AdsMLStructuredDescriptions standard: the human language used in an

Object Definition can be recorded using the

ObjectDefinition/@xml:lang attribute. To specify the language of an

adsml:Description within that ObjectDefinition would be superfluous.

Use of i18n attributes should be guided by an implementer‟s business case and by

the specification and usage rules documentation for the AdsML standard used.

4.4.1 Rules for recording and handling multilingual

content

 In general, the different human language versions of an internationalized

element SHOULD be semantically identical. I.e. if a code value description is

provided in more than one language, then the fundamental meaning of that

description SHOULD not change from one language version of it to the next.

o Note that in some message contexts, such as notes or contact

information, internationalized elements are repeatable because of their

nature and not merely because of their i18n attributes. In these cases

repeated data items may have different semantics. For example, the

fact that two sibling Contacts are included in a message, one in

English and one in Swedish, does not necessarily indicate that they are

the same person.

 Multilingual versions of simple textual content: If textual content is provided

in more than one language, then the element containing that text will be

repeated. In this case at least the xml:lang attribute MUST be specified, so as

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 37 of 65

to identify the language used and allow different language versions of the text

to be easily differentiated from one another.

 Multilingual versions of requirements: The RequirementSpecType‟s content

model allows the specification of requirements using repeatable Code or Text

elements. If there are textual instructions in multiple languages, then all of

the texts in a given language SHOULD comprise a set which should be ANDed

together and treated as a whole.

 Multilingual versions of a set of notes: The Notes content model uses multiple

NoteLine elements to record a set of human-readable notes. If note line(s)

are provided in multiple languages, then all of the notes in a given language

SHOULD comprise a set which should be treated as a whole.

 Conveyance of multilingual document renderings: Different language versions

of the document MAY be provided using the repeatable DocumentRendering

element. If multiple document renderings are provided, they MUST be

semantically equivalent to each other.

Note: it is up to the user to define how to filter and process multilingual content

in an AdsML message.

4.5 Relationship of AdsML messages to

business and technical operations
The types of messages (and associated message codes) used in the AdsML

Framework are designed to support the AdsML message-level choreography. For

example, the AdsML message choreography allows a message to be characterized

as a “transaction request” or “transaction response”, a “change” or a

“cancellation.” The meaning of these messages is well defined within the AdsML

Framework.

It is important to realize, however, that the AdsML messages operate at a

different level than either the business operations that create them, or the

database operations that they are likely to trigger. For example, consider a

scenario in which an advertisement buyer wishes to cancel one of the insertion

dates on a previously placed order. In terms of business operations, the buyer is

likely to think of this as a “cancellation”, and his software system may use that

word. However, the AdsML Ad Bookings standard specifies that a change to just

part of an order must be conveyed in a “change” message, not a “cancellation”

message, and so the buyer‟s system will be expected to generate a “change”

message. And when this message arrives in the receiving system, it may well

trigger a “delete” operation in the publisher‟s database. Therefore, in this

example a “cancellation” operation generates a “change” message that triggers a

database “delete”. (Conversely, when an entire booking is cancelled, AdsML does

use a “cancellation” message as one might commonly expect.)

There is nothing wrong with this apparent mismatch of terms. Each of the

affected domains – business operations, XML messaging, and database

management – uses its own terminology for reasons that make sense within the

context of that domain.

5 Administrative responses and error
handling

Note: The information in this section applies only to the AdsML item-level

standards.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 38 of 65

5.1 When to send an administrative

response
An administrative response message MUST be sent when:

1. Agreed in the TPA, and/or

2. Specified in the message header (administrativeResponseRequired

attribute), and/or

3. During system testing (see also section on “System Testing below), and/or

4. Reporting a technical error in the incoming business-significant message.

5.1.1 Responses to responses
Administrative response messages MUST NOT be given in response to

administrative responses. If an administrative response message itself contains

an error, this should be reported to its sender by non-AdsML means (i.e. phone or

email).

However, as one would expect, a technical error or acknowledgment should be

given to a business level response. For instance, after receiving an ad order

response (AD-OR), the receiver SHOULD issue an administrative acknowledgment

as a message receipt. If the ad order response caused a validation error, an

administrative error message MUST be issued.

5.2 Message types
The message type for administrative response messages MUST be the same as the

type of the message the response is about. Administrative messages MUST

however have the messageClass attribute set to either

„MessageReceivedAcknowledgment‟ or „TechnicalError’ in order to distinguish

from business messages with the same type.

However, in case of “catastrophic” errors where it is not possible to extract the

message type of the received message, the „ZZ-ERROR‟ message type MUST be

used as defined in the Advertising Components Interaction Analysis.

5.3 Technical errors
Technical error messages are triggered by flaws in an incoming business-

significant message that make that message unsuitable for business-level

processing. These flaws are technical rather than business-level errors. They

usually occur either because the message became corrupted during transit, or

more commonly, during the period when two parties are integrating their systems

and there are still some bugs in one or both of their systems.

Errors of a technical nature MUST always be reported if possible. If the sender of

the message containing the error is known, an error message must be returned

using the message groups as defined in the AdsML Framework. In this case the

AdministrativeResponse element must be used, referencing the error message

class.

In case of “catastrophic” errors where it is not possible to extract the message

type of the received message, the „ZZ‟ message code SHOULD be used.

In most cases, the receipt of a technical error message will trigger manual

intervention by the recipient‟s IT staff to determine the cause of the error and put

the underlying business transaction back on track.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 39 of 65

The recipient of a technical error message MUST assume that the business-

significant message which contained the error in question was not delivered to

the application for which it was intended.

A “negative” response to a business message is not considered to be an error. For

instance, a denied booking is usually due to business reasons such as an invalid

insertion date, bad credit etc. Such responses are handled in the normal message

flow where the reason for transaction denial or delivery refusal can be expressed

at a business level.

5.4 Workflow implications
Administrative responses are typically sent and received by an AdsML Processor,

a piece of software which, in many cases, sits outside of the business application

(e.g. sales system or production system) that generates and consumes the

business-significant information. This means that the sending or receipt of an

administrative response message is typically done without the knowledge of the

systems or people who are handling the business-significant information.

Administrative responses can have an indirect impact on workflow processes,

because the absence of an anticipated response can trigger manual processes to

follow up on the situation and ensure that the booking has been properly stored

in both parties‟ systems. However, under normal circumstances the receipt of an

administrative response message will not trigger any workflow processes.

6 Establishing communications

6.1 Message transmission mechanism
The AdsML Framework neither defines nor limits the mechanism by which AdsML

messages are transmitted between trading partners. Use of the AdsML Envelope

and its associated addressing and processing model, while encouraged, is

optional, and the Item-Level standards can be used both inside and outside of the

AdsML Envelope. Further, regardless of whether the AdsML Envelope is used, the

XML messages defined by AdsML are designed to be carried inside of whatever

transmission envelope or mechanism is required by the communications

infrastructure that the trading partners have agreed to use. Options in this area

include, but are not limited to:

 Placing the AdsML messages inside of SOAP envelopes and conveying

them via web services calls

 Converting the AdsML messages into text documents and conveying them

as email attachments

 Converting the AdsML messages into text documents and transmitting

them via FTP

 Using standard Internet protocols such as HTTPS to send AdsML messages

directly between dedicated communications ports on the sending and

receiving systems

 Sending AdsML messages via a communications infrastructure that has

been defined as part of a regional or industry-wide initiative, such as the

ebiz-for-media project in North America

 Sending AdsML messages via a commercial third-party communications

provider that has been engaged by the trading parties, as is the case in

the Ad\Venture project in the Netherlands

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 40 of 65

In all cases, selecting the appropriate communications infrastructure is a critical

early step in the process of defining and configuring the e-commerce project of

which AdsML is a part. However, this choice should have little or no effect on the

AdsML choreography and capabilities that the trading partners elect to

implement.

6.1.1 Conveyance of binary materials

6.1.1.1 In-line content

The AdsML standards support the optional ability to convey binary ad materials,

such as PDF files, in-line as encoded content in the character stream of the AdsML

message. This capability is primarily intended for the conveyance of textual

content such as lineage ads, or for very small binary files such as thumbnails, but

it can theoretically be used for any size of in-line file. Processing in-line binary

content requires an extra step during the packing and unpacking of the

messages. Therefore, trading partners wishing to use in-line content transmission

must explicitly agree on this when setting up their systems, and must ensure that

their AdsML message handling software can support in-line packaging in the

AdsML workflow.

6.1.1.2 MIME packaging

The AdsML standards support the optional use of MIME multipart/related

packaging [MIME 1998] to convey binary ad materials, such as PDF files, in the

same MIME package as the AdsML message that is logically “delivering” those

materials. Processing such MIME packages requires an extra step during the

packing and unpacking of the messages. Therefore, trading partners wishing to

use MIME multipart/related packaging must explicitly agree on this when setting

up their systems, and must ensure that their AdsML message handling software

can support MIME packaging in the AdsML workflow.

6.1.1.3 Retrieval from a specified location

The AdsML standards support the optional ability to convey binary ad materials,

such as PDF files, by specifying an external location (e.g. a URL) from which the

recipient of the AdsML message is expected to retrieve the content. Retrieving

and processing such content requires extra processing. Therefore, trading

partners wishing to transmit materials by external reference must explicitly agree

on this when setting up their systems, and must ensure that their AdsML

message handling software can support the necessary processing.

6.2 Testing
Note: The information in this section applies only to the AdsML item-level

standards.

All AdsML item-level standards support the sending of test messages. Test

messages are used to set up and test digital communications, but must not be

acted upon by either party. Two modes of testing are supported: testing of the

transmission infrastructure, and testing of business communications between the

parties‟ software systems.

In order to allow transmission of test messages, the transmissionStatus

attribute on the root element of any AdsML item-level message can be set to

„TransmissionTest‟ or „BusinessMessageTest‟.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 41 of 65

6.2.1 Testing the transmission channel
When receiving a „TransmissionTest‟ message, an administrative response

MUST be given. A business level response MUST NOT be given, and the message

SHOULD be discarded and not further processed. The idea is to test that a

communications link is working, but not to feed any information into the recipient

party‟s business systems.

Note that test transmissions MUST include only test messages, i.e. no real

messages can be included in a test transmission.

6.2.2 Testing communications between business
systems

Messages with status „BusinessMessageTest‟ are intended to test business

messages such as reservations, orders and content delivery. Such messages

MUST get appropriate responses where the transmissionStatus attribute MUST

be „BusinessMessageTest‟. This scenario goes further than a transmission test,

because it feeds the contents of the incoming message into the recipient‟s

business system. That recipient system is then required to send a business-level

test response back to the originating party.

This scenario only works when the business systems used by both parties are

able to send and receive test information. The recipient of a test business

message MUST issue an appropriate business-level response message, where the

transmissionStatus attribute of the response MUST be „BusinessMessageTest‟.

7 Achieving interoperability
The AdsML standards are designed to be used in many different workflows and

environments. Therefore, they contain many optional elements and relatively few

required ones. Similarly, the AdsML choreography defines many request-response

message pairs that can be grouped together to implement business processes,

but does not prescribe exactly which of these message pairs should be used in

any given e-commerce environment. And finally, AdsML supports a process by

which trading partners can control the values that may be placed in many of the

data elements, but with few exceptions, does not mandate which specific

controlled vocabulary values should be available for use.

As noted in this document‟s introduction, in order to implement AdsML-based e-

commerce, trading partners and their vendors (or industry associations acting on

their behalf) are expected to review the AdsML Framework and decide:

 Which AdsML standards will they implement within their particular region or

business activity?

 Which business transactions will they support?

 Which types of information will they include in their messages?

 Which information will be conveyed in machine-processable elements, vs.

which will be sent as unstructured text that requires human handling?

 For which machine-processable elements will they require use of a particular

controlled vocabulary?

This much flexibility, while critically important, can also lead to implementation

problems and a lack of interoperability. The AdsML Framework provides three

important tools to help users manage these requirements: Configuration

checklists, Controlled Vocabularies, and Profiles. These can then be used as

building blocks when assembling a formal Trading Partner Agreement.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 42 of 65

7.1 Configuration checklists

7.1.1 Checklists vs. conformance levels
In order to facilitate implementation and interoperability, pre-defined packages of

features and functionality are a valuable tool. A systems vendor or trading

partner can use these predefined packages to declare the overall style by which

an AdsML standard (such as AdsMLBookings) is supported in their particular

system or location. This is a better starting point when, for instance, expressing

system requirements for a new bookings system or negotiating a Trading Partner

Agreement with a new trading partner, than having to go through the complete

set of possible features in the standard, one by one.

When such feature packages are organized hierarchically, as for instance in the

Conformance section of the AdsML Envelope Processing Model documentation,

they are often called conformance levels:

 Level 0: Base level, basic functionality

 Level 1: Normal level, most support is expected here

 Level 2: Extended “super-user” functionality and flexibility.

A levelled approach like this assumes that each higher level adds to the

capabilities of lower levels. This concept, used also in other IT areas, is

comprehensible and easy to communicate to users.

In the AdsML item-level standards, however, it is difficult to define a clear

hierarchy. We have chosen instead to define for each standard a set of packages

that are more orthogonally independent feature sets, from which implementers

can pick and choose according to their business requirements. Such an approach

is less helpful for achieving interoperability than a levelled hierarchy, since

different systems are more likely to support different combinations of these

features, and more issues will need to be resolved during the TPA set-up phase.

But the TPA set-up process will nevertheless be smoother with a checklist of

modules as a starting point, compared to a situation where no such modules have

been defined at all.

A non-hierarchical approach also has the advantage of not “forcing” a developer

to implement features that are irrelevant to the business problem at hand, only

because some of the features on a particular level were required.

An approach using packages of independent modules cannot be called

conformance levels since the name itself suggests a hierarchy. Also, at the time

of this writing the AdsML Technical Working Group is not prepared to issue

recommendations or requirements for how a particular party can be proven to

“conform” to an AdsML standard. We have chosen instead to refer to these

packages of functionality as “Configuration checklists”.

7.1.2 Use of configuration checklists
The Configuration Checklists provide a common approach and terminology for

defining the most common choices that users must make when implementing

each AdsML item-level standard. Each checklist consists of a set of “packages” of

features. Some of them provide options which directly affect the technical

capabilities of the sending and receiving systems (for example, the ability to send

binary content in-line in a message). Others reflect important choreography

choices that need to be agreed between trading partners when they establish

AdsML communications.

Each package consists of either:

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 43 of 65

 a set of hierarchical levels from which one must be selected (represented by a

numbered list), or

 a set of non-exclusive options from which any combination can be selected

(represented by a bullet list), or

 a list of mutually-exclusive choices from which one must be selected

(represented by a textual description).

AdsML does not define a storage format for the configuration choices that have

been made. It is up to users and vendors to record their configuration selections

in the most appropriate format to the task at hand. Depending on circumstances,

an appropriate format could range from the back of a napkin, to a word processor

document or spreadsheet, to an XML file that is read in automatically by an

AdsML-enabled system.

It is RECOMMENDED that developers and trading partners use the AdsML

Configuration Checklists when selecting functionality to build into their systems,

and as a starting point when communicating with each other and with their

vendors about their systems‟ capabilities.

It is RECOMMENDED that vendors use the AdsML Configuration Checklists when

defining and describing the AdsML-related functionality that is supported by their

systems.

It is RECOMMENDED that vendors provide a mechanism by which each customer‟s

AdsML-enabled system can be configured in accordance with options in the

relevant AdsML Configuration Checklist. For example, a customer who is

configuring a system to exchange AdsML Bookings messages would be able to use

the AdsMLBookings Configuration Checklist (or at least, those options from the

AdsMLBookings checklist which their vendor has chosen to support) as a starting

point for specifying how they would like to use their system when communicating

with their AdsML trading partners.

See the documentation for each AdsML item-level standard for further information

about the configuration checklist options that are provided in that standard.

7.2 Controlled vocabularies
Despite its relatively technical name, a “controlled vocabulary” is simply a

mechanism to separate the lists of allowed values that can be included in a

business message from the structural definition of that message. This provides

significant management benefits in the AdsML environment, where each

organization that implements AdsML will have to maintain lists of allowed values

(“controlled vocabularies”) that will change at their own pace, independently of

the pace at which the AdsML Schema is updated over time. By using a controlled

vocabulary approach, the organization will be able to manage its master lists of

controlled values without having to worry about how to integrate them with past

or future releases of the AdsML Schema.

7.2.1 Validating controlled values
Control of allowed values in business messages can either be a part of the trading

partners‟ application logic, or a part of a validation process using XML Schema

based validators. The former relaxed approach does not require any special

formal handling as long as the trading partners agree on the list of allowed values

which are then recorded inside AdsML business messages as simple strings.

It is often almost always possible to include the name of the controlled

vocabulary (i.e. a code list) from which a value is taken. This feature enables

trading partners to dynamically name and use values from different controlled

vocabularies in their business messages. For instance, consider a market where

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 44 of 65

two different but similar code lists for ad sizes are in use, one for magazines and

one for newspapers. In a booking, both code lists use the value „FullPage‟ but by

also specifying the code list name, trading partners will be able to process the ad

size specification correctly according to the originating controlled vocabulary‟s

definition for that value.

But for a more formal approach, AdsML have chosen also to support validation of

controlled vocabularies using some of the built-in XML Schema capabilities,

because doing so makes it possible for implementers to use an off-the-shelf XML

Schema validator to validate the controlled values in each AdsML message that

they receive, rather than having to write custom code for the same purpose.

In this regard, the technical framework effectively allows each element in an

AdsML message to be defined as belonging to one of several categories:

1. Not a code: it is not possible for regional groups to define a controlled list

of values for this element that can be enforced by schema validation

2. A “fixed” AdsML code field: AdsML has defined a fixed set of values that

cannot be changed by regional groups, and that will be schema validated

3. A “modifiable” AdsML code field: AdsML has defined a recommended set of

values that can be schema validated, however the list can be removed or

replaced by regional groups

4. Potentially a code field: AdsML has not defined a set of values, but

regional groups can define their own lists of values which will then be

enforced by either application logic or schema validation

For those elements in the latter two categories for which schema validation is

required, AdsML provides mechanisms by which any group that is implementing

an AdsML standard can define its controlled vocabulary extensions and

replacements, which are packaged in schema extension files that are maintained

by the regional group and versioned separately from the AdsML standard. For a

detailed description of how to implement these schema extensions, see

“Implementing controlled vocabularies with schema-based validation” later in this

document.

7.2.2 The AdsML Controlled Vocabularies
The AdsML Framework includes a set of recommended controlled vocabularies.

They are detailed in the schema whose namespace is “adsml-cv”, and HTML

documentation for them is included in the Framework release.

Users of the AdsML Controlled Vocabularies should note that each controlled

vocabulary has a status associated with it, either "Proposed" or "Approved". A

controlled vocabulary with a "Proposed" status should be treated as a work in

progress. It could be a new controlled vocabulary which has not had sufficient

review, has been recently heavily augmented, or is under reconsideration. It

should be used with appropriate caution.

A controlled vocabulary with the "Approved" status should be treated as stable, in

that the values in it are unlikely to change, although it is not necessarily

comprehensive. It is strongly RECOMMENDED that if an AdsML CV contains a value

with “Approved” status that closely matches the information you need to transmit

you SHOULD use that value in your messages in order to promote interoperability

across implementations of the AdsML Framework.

A controlled vocabulary can change status between releases if it is either

(re)approved, which changes it to "Approved", or is modified, which changes it to

"Proposed".

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 45 of 65

The AdsML CVs are constantly evolving. Most changes are additive, making them

backwards compatible, but this is not always the case. For example, in

Framework 3 the LinkedPlacement structure was significantly changed, such that

where in Framework 2 there had been a single set of PlacementLink codes, in

Framework 3 these were divided into three different code elements, each with

different semantics. The matching CV was split and reworked to match the new

semantics. As a result of these types of changes, each release of the AdsML CV

set is only guaranteed to work in the Framework in which it was created, and may

not be backwards compatible with prior releases of the Framework.

Each AdsML controlled vocabulary is assigned a unique Reference ID consisting of

the name of that vocabulary plus the draft number of the CV package that

contains it. (For example, “AdsMLAdTypeCV:1”.) If you want to reference a set of

AdsML CV values as they existed at a particular point in time from an external

document, such as a TPA, use the Reference ID of the CV containing those

values.

7.2.3 Examples
Here are examples showing the five most common ways to represent a controlled

vocabulary value in an AdsML messages, in this case, a color code. The

information content of these examples is identical – a color code of “ProcessColor”

– but the metadata indicating how that value can be validated is different in each

case. Because the same code structures are used throughout the AdsML

Framework, the approaches shown here are available for any code in an AdsML

message. Trading partners are free to select the approach that is most suited to

the code at hand in their situation. Frequently, different approaches will be used

for different types of codes, depending on how important it is to validate them

and where the list of valid values can best be maintained.

7.2.3.1 Code value only
<Colors>

 <ColorType>

 <adsml:CodeValue>ProcessColor</adsml:CodeValue>

 </ColorType>

</Colors>

In this first example, the sender provides a color code value “ProcessColor” but

does not indicate how to validate it. Either the trading partners have previously

agreed on a set of valid color code values, or the recipient‟s application will not be

able to validate the value automatically.

7.2.3.2 Explicit reference to an external code list
<Colors>

 <ColorType>

 <adsml:CodeList>OurColorCodes</adsml:CodeList>

 <adsml:CodeValue>ProcessColor</adsml:CodeValue>

 </ColorType>

</Colors>

In this example, the message explicitly indicates that “ProcessColor” can be

validated against a code list named “OurColorCodes”. Assuming that the

recipient‟s application has access to a current copy of OurColorCodes, the

application can programmatically determine whether “ProcessColor” is a valid

entry.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 46 of 65

7.2.3.3 Explicit reference to an AdsML code list
<Colors>

 <ColorType>

 <adsml:CodeList>AdsMLColorTypeCv</adsml:CodeList>

 <adsml:CodeValue>ProcessColor</adsml:CodeValue>

 </ColorType>

</Colors>

This example is identical to the prior one, except that the naming convention of

the CodeList indicates that CodeValue comes from an AdsML recommended

controlled vocabulary.

7.2.3.4 Schema-validatable reference to a user-provided

controlled vocabulary
<Colors>

 <ColorType>

 <adsml:CodeValue

 xsi:type="usercodes:OurColorCodes">ProcessColor</adsml:CodeValue>

 </ColorType>

</Colors>

This example is similar to the previous one, in that the message asserts that

“ProcessColor” can be validated against a controlled vocabulary named

“OurColorCodes”. But in this case, use of the xsi:type attribute asserts that the

OurColorCodes value set has been recorded in a schema with the namespace

“usercodes”. Therefore, if an XML schema processor is used to validate the

message, it will ensure that “ProcessColor” is a valid entry.

Note: The use of xsi:type in the AdsML Framework to drive schema validation is

described in “Implementing controlled vocabularies with schema-based

validation” later in this document.

7.2.3.5 Schema-validatable reference to an AdsML controlled
vocabulary

<Colors>

 <ColorType>

 <adsml:CodeValue

 xsi:type="adsml-

cv:AdsMLColorTypeCv">ProcessColor</adsml:CodeValue>

 </ColorType>

</Colors>

This example is operationally identical to the prior one, except that in this case

the xsi:type value “adsml-cv:AdsMLColorTypeCv” indicates that “ProcessColor”

should be validated against an AdsML-provided controlled vocabulary named

“AdsMLColorTypeCV”. All of the AdsML controlled vocabularies can be found in the

schema whose namespace is “adsml-cv”.

7.3 User-defined properties
In order to encourage interoperability, users are not allowed to add their own

elements to the AdsML schemas or messages. However, sometimes a regional

group will need to exchange machine-processable values for which AdsML does

not provide the necessary structures.

The solution is to create one or more user-defined properties using the

adsml:Properties mechanism. This mechanism allows trading partners to define

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 47 of 65

the additional information they need to transmit, and convey it in such a way that

it can be efficiently identified and processed.

AdsML provides optional, repeatable adsml:Properties elements in every

message format, often at more than one location. For example, in AdsMLBookings

there are adsml:Properties structures available in the business-message

header, in each placement group, and in each placement.

Within adsml:Properties there are two ways to represent a user defined value:

as a Property, or as a LabeledProperty. In terms of their information content,

these structures are effectively identical. Each of them allows you to convey a

name:value pair, where the name is the name of the property in question, and

the value is the value of that property that is being conveyed in this particular

message. The difference is that Property requires you to define the property

name in an AdsML extension schema and reference it using an xsi:type

attribute, while LabeledProperty allows you to convey the information more

informally.

7.3.1 Usage rules
Regardless of the mechanism that is used, trading partners wishing to exchange

user-defined properties SHOULD agree in advance on the syntax, labels, meanings

and usage of the properties they wish to exchange.

Any user-defined properties contained in a received message instance that have

not been agreed in advance are not bound to be understood and therefore

SHOULD be ignored by the receiving application.

7.3.2 Syntax examples
Here are examples of two values being transmitted first as a pair of user-defined

LabeledProperty(s), and then as a pair of user defined Property(s).

These examples are adapted from an actual AdsML implementation in which the

messages were sent between two internal systems within the same business, and

therefore contained technical information (a Change Flag and a Last Updated

date/time) that would not normally be found in a business-to-business AdsML

message.

In non-AdsML syntax, these values could have been represented as:

ChangeFlag=”true” and LastUpdated=”2001-12-17T09:30:47”. The only way to

convey this additional information while conforming to the AdsML standard,

however, is to use one of the two properties mechanisms as shown below.

7.3.2.1 Using adsml:LabeledProperty

The LabeledProperty element is similar to the code structures that are used

throughout the Framework and were described in the previous section. There are

two internal elements: a mandatory Value containing the property value, and an

optional Label which identifies its type.

<adsml:Properties>

 <adsml:LabeledProperty>

 <adsml:Value>true</adsml:Value>

 <adsml:Label>ChangeFlag</adsml:Label>

 </adsml:LabeledProperty>

 <adsml:LabeledProperty>

 <adsml:Value>2001-12-17T09:30:47</adsml:Value>

 <adsml:Label>LastUpdated</adsml:Label>

 </adsml:LabeledProperty>

</adsml:Properties>

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 48 of 65

It is strongly RECOMMENDED that when using LabeledProperty, the Label should

be explicitly provided as shown above. This allows software to differentiate

between multiple properties in the same message, and makes it easier for the

recipient to process them.

It is RECOMMENDED that the Label provided for a user defined property should

include the domain name of the organization that defined the property, a date on

which that organization controlled the domain name, and the name of the

property itself, for example: “MyOrg.com:2006-10-01:ChangeFlag”. This is the

same format that is used for AdsML “QID” elements. Use of a fully qualified

property label in this way allows a receiver getting, e.g., LastUpdated properties

from two different senders to recognise the difference automatically. In this case,

the full message fragment would be:

<adsml:Properties>

 <adsml:LabeledProperty>

 <adsml:Value>true</adsml:Value>

 <adsml:Label>myorg.com:2006-10-01:ChangeFlag</adsml:Label>

 </adsml:LabeledProperty>

 <adsml:LabeledProperty>

 <adsml:Value>2001-12-17T09:30:47</adsml:Value>

 <adsml:Label> myorg.com:2006-10-01:LastUpdated</adsml:Label>

 </adsml:LabeledProperty>

</adsml:Properties>

If you are only transmitting one property, however, and wish to do so in as

compact a manner as possible, you and your trading partners may agree to

convey just its value. As can be seen in the example below, this is a risky

approach unless you are certain that the message recipient will know how to

process the un-labeled value:

<adsml:Properties>

 <adsml:LabeledProperty>

 <adsml:Value>true</adsml:Value>

 </adsml:LabeledProperty>

</adsml:Properties>

7.3.2.2 Using adsml:Property

The Property element uses an xsi:type attribute to label each user-defined

property. Here are the same two user-defined properties being conveyed using

Property elements:

<adsml:Properties>

 <adsml:Property xsi:type="lat:ChangeFlag">true</adsml:Property>

 <adsml:Property xsi:type="lat:LastUpdated">2001-12-17T09:30:47

</adsml:Property>

</adsml:Properties>

This is a more compact syntax than LabeledProperty, but in order to use it, you

must first create a user extension schema in which you declare each property

that you want to use. (For more information about creating and referencing a

user extension schema, see “Implementing controlled vocabularies with schema-

based validation” later in this document.)

The advantage of doing this is that it allows schema-validation of the property

elements. The potential disadvantage is that your messages will no longer be

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 49 of 65

valid according to the un-modified AdsML schema. This is an unavoidable side-

effect of using the extension schema mechanism.

Here is the syntax to declare these two properties in a user extension schema:

<xs:simpleType name="ChangeFlag">

 <xs:restriction base="adsml:PropertyRootType"/>

</xs:simpleType>

<xs:simpleType name="LastUpdated">

 <xs:restriction base="adsml:PropertyRootType"/>

</xs:simpleType>

This example shows a minimal declaration, in that it allows use of the properties

but does not restrict the values that can be conveyed in them. It is possible to

define much more restrictive XML schema validations for each property, if you

wish.

7.4 Profiles
A “profile” is a subset of a standard that is defined in order to reduce complexity,

facilitate implementation, and increase interoperability. For example, the XML

standard is a profile of a more complex standard called SGML. XML carved away

most of the optional features of SGML and specified a narrow subset of it. The

XML standard is much easier and less expensive to implement than SGML was,

and it allows its users to solve many business problems. However, there are some

activities for which SGML is still used, because those activities require features

that are not available in XML.

It has always been the intention of the AdsML working group that regional or

industry associations will create profiles of the AdsML Framework, in which they

specify which parts of the Framework should be implemented by their members in

order to solve advertising-related business problems that are common to

members of that group. Once a suitable profile has been defined, vendors can

implement software that supports just the features and functionality in that

profile, and participating organizations can use such software to exchange

messages which are known to address their industry‟s business requirements in

an interoperable fashion.

Profiles are created by using the same AdsML capabilities – primarily

configuration checklists and controlled vocabularies – that are available to any

organization wishing to implement AdsML-based e-commerce. The only significant

differences between profiles and less formal AdsML configuration activities are

that profile definitions are normally made publicly available so that many

organizations can benefit from them, and AdsML messages which conform to a

formal profile are then tagged with the name of that profile. This allows software

systems to identify when an incoming message conforms to a given profile, and

to validate, route and process that message accordingly.

An AdsML profile MUST be a strict subset of its parent standard. Therefore, the

changes in a profile MUST only affect optional aspects of the standard being

profiled. Anything that is declared mandatory in the parent standard MUST also

be mandatory in the profile, and any XML message that conforms to a profile

MUST also conform to the parent standard‟s XML schema.

An organization can create as many AdsML profiles as it needs.

7.4.1 Types of information
It is anticipated that the following types of information will commonly be defined

in an AdsML profile:

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 50 of 65

1. Standard(s) and types of information

a. The AdsML standard to which this profile applies. It is

RECOMMENDED that each profile apply to just one AdsML standard.

b. The types of information that will be conveyed using this profile.

c. Whether or not the AdsML Envelope will be used, and if so, which of

the Transmission/Response modes will be supported.

2. Messages and choreography

a. The list of AdsML message types that are available for use in this

profile. This will often be a subset of the full suite of messages

defined by the AdsML standard to which the profile applies.

b. Subsets of the Advertising Components Interactions Analysis that

must be supported by users of this profile, i.e. business situations

in which a specific AdsML message must be sent.

c. Conversely, subsets of the Advertising Components Interactions

Analysis that are not supported by users of this profile, i.e.

situations in which specific AdsML messages which are otherwise

supported in the profile must not be sent.

d. Use of datagram vs. request-response mode, and if datagram

mode, the direction in which the messages will be sent.

3. Element cardinality

a. Elements that AdsML has declared as optional but whose use is

mandatory in the profile, including substitution groups (for

example, placement.newspapermagazine in AdsMLBookings).

b. Conversely, optional elements or substitution groups that must not

be used in messages conforming to the profile.

c. Optional elements or substitution groups that remain optional in

the profile. (By default, all optional elements and substitution

groups fall into this category unless they are explicitly excluded or

made mandatory.)

d. Maximum occurrences of potentially repeatable elements which are

less than the maximum occurrence allowed by the AdsML schema.

4. Mandatory use of particular controlled vocabularies.

This list is intended to be indicative rather than normative.

7.4.1.1 Example

For example, an extremely simple profile of AdsML Bookings intended for use in a

pilot project might specify:

Profile name and

ID

AdsMLBookings US magazine pilot

myorg.org:2006-01-01:AdsMLBookingsUSMagPilot:1

Standard being

profiled

AdsMLBookings v. 1.0

AdsML

Envelope?

Yes

“Store and resend until acknowledged” mode

Information

overview

Magazine display ad orders (no quotations or reservations;

no inserts)

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 51 of 65

New orders only (no changes or cancellations)

Messages AD-O, AD-OR

Choreography Request-response mode

The message exchange consists of a new order (AD-O) from

buyer to seller, followed promptly by an administrative

response indicating its receipt.

In due course the seller sends a a business response (AD-

OR) which indicates either acceptance or rejection of that

order. The AD-OR also triggers a prompt administrative

response.

No other messages are included.

Element

inclusions
Use .NewspaperMagazine structures rather than .Generic

(A list of mandatory elements or types of information would

go here.)

Element

exclusions and

limitations

One placement per booking;

No placement groups;

Max 10 dates per placement, all within a single calendar

month;

No pricing information.

(A list of other AdsML elements or types of information that

must not be included in the messages would go here. Or,

the profile could list the optional elements and types of

information that are allowed, if that is easier to document.)

Controlled

vocabularies

(A list of elements and their required controlled vocabularies

goes here. These could be from the AdsML CV list, or other

vocabularies that were defined or selected.)

7.4.2 Profile identification
AdsML does not specify a format for storing or publishing an AdsML profile. It is

up to the organization that creates a profile to codify it in a suitable format.

However, each organization that defines an AdsML profile MUST assign a unique

identifier to that profile. All AdsML messages conforming to a given profile MUST

include that profile‟s unique identifier in the message body, according to the

following rules:

In the AdsML item-level standards such as AdsMLBookings and AdsMLMaterials,

the profile identifier is conveyed in the schemaProfile attribute of the root

element. In the AdsML Ad Ticket format, the profile identifier is contained in the

SchemaProfile element. In both cases, the structural rules for an element or

attribute are based on the AdsML VersionedQIDType described in the AdsML Type

Library specification and MUST be followed.

According to those rules, a sample profile identifier value might look like this:

“myorg.org:2006-01-01:AdsMLBookingsUSMagPilot:1”. The profile identifier

consists of three mandatory sections separated by colons, followed by a fourth,

optional section, which is also preceded by a colon when it is used. (In the

example above, all four sections are provided.)

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 52 of 65

1. The first section of the profile identifier is an internet domain name that

was controlled by the organization that defined the profile at the time the

profile was published.

2. The second section is a date on which the domain name belonged to the

organization that defined the profile. The date SHOULD be the publication

date of the profile in question, and MUST be a date on which the publishing

organization controlled the specified domain name.

3. The third section is the generating organization‟s name for the profile. This

can be any value, however it SHOULD be a name that indicates the scope

and/or purpose of the profile and it MUST be a unique string within the set

of all profile names that share the same domain name and date.

4. The optional fourth section is a version identifier for the profile. This may

be in any format that the organization chooses.

The colon (“:”) character is reserved for use as a separator between the four

sections of the profile identifier. The colon character MUST NOT appear in any of

the data sections themselves. Following this pattern will make it easier for

developers to write a parsing routine that can deal with any profile identifier.

The default value for a profile identifier in any AdsML message is blank (omitted),

which indicates that the message conforms to the AdsML specification as a whole

and no formal profile has been applied.

7.5 Trading partner agreement
A Trading Partner Agreement (TPA) is an agreement between two (or more)

parties that governs how they will do e-commerce together. A TPA will encompass

many different types of information, from legal and contractual decisions, to

workflow patterns, to technical details regarding system configuration. In practice

a TPA usually turns out to be more than one document, some of which are

considerably more formal than others, which are discussed and agreed separately

by various parties within the organizations.

AdsML does not define a process for arriving at a trading partner agreement, or a

format in which to record the results. These will necessarily vary from one

organization to the next. But in general, parties wishing to engage in e-commerce

communications should consider at least the following types of issues and record

their mutual decisions in a format that is acceptable and accessible to all parties:

Legal and contractual

 Who are the parties?

 When did/will the TPA come into force, and when will it expire?

 How will the AdsML e-commerce messages relate to any contracts or

agreements that are in force between the parties?

 Under what circumstances does an AdsML message constitute an acceptable

“order”, “delivery”, “invoice”, etc? What specific information must such

messages contain in order to replace the current, non-AdsML methods for

transmitting these things?

 How does “acceptance” of an AdsML order or delivery relate to the parties‟

contractual obligations or to any Terms and Conditions that they may each

wish to assert?

Transmission and security

 How will the AdsML messages be transmitted between the partners (HTTPS,

FTP, SOAP service calls, etc.)?

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 53 of 65

 To what address will the messages be sent? (Note that this can vary according

both to transmission type and message type.)

 What if an address is unavailable? What about backup or alternate addresses

or transmission methods?

 What type of IDs will the parties use to identify themselves and their partners

(e.g. tax identification number, DUNS code, or similar unique value)?

 What tools will the parties employ to ensure that the messages always go

through unchanged and cannot be corrupted, intercepted or spoofed by other

parties? (Encryption, encoding, digital signatures, etc.)

AdsML Envelope Processing (if used)

 Which type of Transmission/Response model should be used (“send and

forget” or “store and resend until acknowledged”)?

 What version(s) of the AdsML Envelope standard will be used?

 What addressing redirection, if any, should be performed by an AdsML

Envelope processor when dealing with a partner?

 Will priority handling be supported?

Workflow

 For which types of business transactions will the parties implement AdsML-

based e-commerce?

 What will be the primary workflows?

 How will the parties handle changes, cancellations, repeats, pickups, errors,

and other common workflow variations?

 What will be the relationship between the AdsML messages and the current

non-AdsML procedures?

 At what point will the non-AdsML workflow be shut down? If both AdsML and

non-AdsML workflows will run in parallel, what happens when there are

discrepancies between the two?

 How will hybrid workflows be supported, for example, where an AdsML-

booked order is modified by a telephone message

AdsML Message Processing and Configuration

 Is there a defined profile of AdsML that will be used? (If so, this will supply

many of the other answers in this section.)

 Which AdsML standards will the parties use, and which versions of them?

 Which messages and types of information will the parties exchange in order to

support the agreed workflows?

 What standard or format will be used to represent each such type of message

(e.g. IfraAdConnexion, AdsMLBookings, AdsMLMaterials, CREST, SPACE/XML,

a non-XML EDI standard, etc.), and what are the supported version numbers?

 Will the parties implement datagram or request-response communications?

 Is an administrative response required for every message?

 Which types of optional information will be considered mandatory in, or

conversely excluded from, the messages?

 For which elements will the parties require use of controlled vocabularies, and

for each such element, which vocabulary will be used and how will it be

identified in the messages? Note that this can encompass a great deal of

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 54 of 65

critical information, including party identifiers, classifications, publication lists,

size, color, positioning, etc.

 For each message type, which parts of the Configuration Checklist in the

relevant Usage Guidelines will apply?

Error Handling

 After what amount of time will the lack of response to a message be

considered an error requiring corrective action?

 Are there other defined circumstances that should be treated as errors?

 If an error is detected, what are the procedures to resolve it, including people

to contact on the other side? This needs to be answered twice:

o Transmission and envelope error procedures

o Business information error procedures

Although this list can seem daunting, trading partners in early AdsML projects

have consistently reported that the TPA development process has served to

improve communications between them. Ironically, the move to automated e-

commerce can result in more direct contact between the parties rather than less

(at least during the setup and testing stages), which provides an opportunity for

the parties to improve business relationships as well as workflows and

procedures.

7.5.1 Process Partnership Agreement
The Process Partnership Agreement, or PPA, is the subset of the information in a

Trading Partner Agreement that must be available to an AdsML Processor in order

for it to communicate properly with each of its communication “partners”.

For example, the PPA can identify the types of information and formats that can

be sent to a given communications partner, any addressing redirection that

should be performed by an AdsMLEnvelope processor when dealing with that

partner, and the transport mechanism and physical address to which AdsML

messages intended for that entity should be sent.

A single logical rule set governs AdsML processing between any two partners. The

rule set is contained in each partner‟s PPA. While most of these rules will be

symmetrical, symmetry is not a requirement: a different set of rules can apply to

each partner depending on whether it is Sending information to the other partner

or Receiving information from it, provided that at a business level the two parties

have agreed to operate in this fashion.

7.6 Party identification
In order to implement AdsML-based e-commerce, it is necessary for trading

partners to agree on the types of identifiers that they will use to identify the

parties that are referenced in an AdsML message. In this regard, parties fall into

two broad categories:

 Parties for which it is important to the trading partners that they be able to

uniquely and unambiguously identify that party. These are usually the parties

with which the trading partners have a financial relationship, and as a result,

for which they are likely to maintain an internal database record with its own

unique ID and other information. In the Bookings workflow, typical examples

are the Buyer and Seller of advertising, and often the Advertiser itself.

 Parties for which it is useful for trading partners to know their name, but it is

not important that they have an unambiguous identifier. These are usually

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 55 of 65

third parties that are more loosely related to the transaction, but whose

names may be helpful when communicating about that transaction.

Trading partners usually know quite clearly which parties to a given type of

transaction need to be unambiguously identified. When this is the case, it is

important to agree in advance on just how those parties will be identified. There

are several possible approaches:

1. The trading partners agree to use identifiers provided by a third-party,

such as government tax ids (VAT number, EIN number, etc.), or D-U-N-S

or S&P numbers.

2. The trading partners share one or both of their lists of identifiers with each

other, and agree to use those identifiers in their messages

3. The trading partners decide to enlist an industry association or other

suitable group to maintain a master list of trading partners, each with its

own unique identifier, which can then be referenced in the messages

4. The trading partners fail to agree on a shared set of identifiers, forcing

each of them to add extra processing to incoming messages in order to

“map” the party identifiers to their own internal system identifiers.

Each of these approaches has varying degrees of strengths and weaknesses, and

unfortunately, all of them are in use somewhere today. To the extent possible, it

is RECOMMENDED that trading partners agree to use identifiers provided by a

suitable external authority (option 1, above), and if necessary, supplement this

approach by also using one of the other mechanisms as well. Each Party in an

AdsML message can be associated with multiple Identifiers, and each

Identifier is labeled with a string that indicates its type or source. This allows

trading partners to provide as many different types of identifiers as necessary to

ensure that the message recipient will be able to resolve the identification

references correctly.

For more information about the Party and Contact structures, see the AdsML

Type Library specification.

8 Implementing controlled vocabularies

with schema-based validation

8.1 Introduction & rules for use
AdsML provides a facility that allows specific controlled vocabularies (CVs) to be

used and validated if desired. This has been achieved by specifying a default type

known as a 'root type' for the element context. For instance, the

adsml:CodeValue element is defined as an adsml:CodeRootType where a CV

value can be provided and also be validated as a part of the overall validation of

the message.

The adsml:CodeRootType is in fact based on a simple string data type allowing

any string value to be used in case no value control is required, or done in custom

application logic.

In cases where an XML Schema based validation of the CV values is preferred,

the CVs first need to be defined using XML Schema in a schema file. AdsML

provides a set of core built-in CVs such as a set of status codes, ad positioning

codes etc. These CVs are defined in the AdsML Controlled Vocabularies schema

and specification.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 56 of 65

But also trading partners, or industry associations, may use the same approach

as taken by AdsML to create specific libraries of CVs that may be used instead of

the CVs recommended by AdsML.

Where one of the 'root types' is specified as the type of an element, this indicates

that the root type may be replaced (or 'substituted') in an AdsML instance

document by a CV type defined in an XML Schema and derived from the root

type.

In order to validate against an XML Schema defined CV type, the CV type must be

specified in XML business messages by using the xsi:type attribute of the

element in question. For instance, the following sample shows how the value of

the adsml:CodeValue element is defined as being a member of the adsml-

cv:AdsMLStatusCodeCV:

<adsml:CodeValue xsi:type=”adsml-cv:AdsMLStatusCodeCV”>

Completed

</adsml:CodeValue>

AdsML specifies controlled vocabulary root types for use in element contexts

where precise values are, or are likely to be, required - that is, a user may want

to specify and use a controlled vocabulary of values.

Functionally, therefore, where AdsML specifies a controlled vocabulary 'root type'

this mechanism allows an element value to take data at 3 levels:

1. Default data type - any value of a data type allowed by the root type (e.g.

string, Boolean, integer, et cetera) can be specified for use. The root type

is the default data type of the element and the value is not confined in any

way beyond the data type allowed by the root type

2. AdsML defined specific value – an AdsML controlled vocabulary value (e.g.

particular Item types, a priority rating in a range, et cetera). The AdsML

controlled vocabulary in question is specified by using the xsi:type

attribute of the element in question in the instance document

3. User defined specific value – a user-defined controlled vocabulary value

(e.g. a list of Item types to cater for specific types of item that are

particular to the individual trading circumstances of specific trading

partners, a priority rating in the range 1-4, et cetera). The user-defined

controlled vocabulary in question is specified by using the xsi:type in the

same way as for the AdsML controlled vocabularies above.

Consequently, the AdsML controlled vocabulary mechanism allows the user

flexibility and control in how they record the data values that they use in the

AdsML message and enables trading partners to tailor their needs to their

individual operating contexts while maintaining interoperability. This allows the

user to exercise control over the extent to which they define precise values for

use or not and the extent to which they decide to validate values using XML

Schema validation. For example, if a user wants to record an encryption method

as a string they can do so and if they want to specify that only two specific

encryption methods are used then they are able to specify that and enforce the

constraint by using XML Schema validation.

The following sections describe in more detail the approach to creating XML

Schema based CVs.

8.1.1 Root types
As stated, the 'root types' are the default types of the element contexts in AdsML

where a controlled vocabulary can be specified for use. The root type specifies the

data type of that context and the use of this default mechanism enables variable

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 57 of 65

degrees of control to be exercised over the value that appears in this context in

an AdsML instance document. If no specific value is required, then the root type is

used by default and the only constraint to be imposed on values is validation

against the base type of the root type. Alternatively, if a specific value is

required, then a controlled vocabulary can be used - the default root type is

overridden and substituted in an instance document by the use of either an

AdsML or a user defined vocabulary derived from that root type.

Depending on the usage context, controlled vocabulary root types may be either

simple or complex types. Simple root types are the most common and can be

used in element contexts where the element has no attributes; complex root

types can only be used in element contexts where the element has attribute(s)7.

A simple root type is no more than a built-in XML data type under a different

name, perhaps with one of the facets restricted – for example, the maximum

length of characters allowed. Simple root types are always derived by restriction.

8.1.2 AdsML defined Controlled Vocabularies
AdsML provides a set of basic controlled vocabularies that can be substituted and

used for root type contexts. The AdsML Controlled Vocabularies are defined in the

AdsML Controlled Vocabulary schema and are the optional but recommended

official AdsML controlled vocabularies available for use in AdsML.

Note that in some usage context where there is a requirement to specifically

control values that an AdsML CV will directly be specified as the declaration type

of an attribute or element context in the schema. An example of this is in the

AdsML Envelope where the ItemType element is declared as the

adsml:MessageClassCV controlled vocabulary. Such CVs are defined not in the

AdsML Controlled Vocabulary schema, but rather in schemas local to each

standard, or in the AdsML Type Library.

8.1.3 User defined Controlled Vocabularies
If users wish to define their own controlled vocabularies for use in root type

contexts in order to meet the requirements of their particular usage context, then

they SHOULD do so by creating a user-extension schema in which their controlled

vocabularies are defined. (See the chapter on User defined controlled

vocabularies for how to create a user-defined controlled vocabulary extension to

AdsML.)

8.1.4 Guidelines for controlled vocabulary use in
AdsML

In an AdsML message instance, controlled vocabulary values MAY be recorded by

using specific AdsML or user-defined controlled vocabularies derived from the root

types.

AdsML recommends that AdsML defined controlled vocabularies SHOULD be used

to record controlled vocabulary values wherever possible. The AdsML defined

controlled vocabularies can also be used as a base for creating user-defined

controlled vocabularies by derivation.

7 Element contexts may require the use of complex types for controlled vocabulary root types in
circumstances where the element requires an attribute value to also be recorded. In order to allow the
controlled vocabulary root type to be substituted with a more specific AdsML or user-defined
controlled vocabulary, the attribute(s) must be added to the root type. The only instance of this at the
present time is for the Format element, where the Format element carries a version attribute.
Furthermore, the AdsML Technical WG does not plan in the future to create any other cases that
require complex root type derivation, but instead plans to use the less complicated simple type
derivation approach.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 58 of 65

When an AdsML Controlled Vocabulary does not contain the required values, or if

the user does not want to specify and/or validate precise controlled vocabulary

values, then the user SHOULD simply use the root type of the element in question

'as is' and so need take no further action as the root type is by nature the default

type of the element in question.

Where circumstances require the specification and/or validation of precise

controlled vocabulary values that are not already present in the AdsML Controlled

Vocabularies, then the user SHOULD define their own list of controlled vocabulary

values as a user-specific controlled vocabulary by deriving a new type containing

those values from the relevant root type(s) or AdsML controlled vocabulary this

type(s).

If a user wishes to create and use their own controlled vocabularies, then the

user SHOULD do so by creating and using an extension schema as defined in the

next chapter, User Extensions.

8.1.5 Illustrative example of the AdsML controlled
vocabulary mechanism

An example of controlled vocabulary use is where the required values of an

element are only 'X' and 'Y' and so these values need to be specified as the only

valid values for the element. Rather than having a data type of 'string', string is

restricted to allowed values of 'X' and 'Y'.

To illustrate this by example taken from the AdsML Envelope 1.1 standard, the

Encoding element used to identify the encoding of data carried inside an

ItemContent element is specified as EncodingRootType. The EncodingRootType

is specified as ShortTokenType, a restriction of the xs:token data type to a

maximum length of 50 characters. AdsML provides an AdsML controlled

vocabulary for encoding types - AdsMLEncodingCV – which can be specified for

use in the Encoding element context by substituting it for the root type using the

xsi:type attribute of the Encoding element in a message instance. The code

example shows schema fragments defining the Encoding element, the

EncodingRootType, and two types derived from it - AdsMLEncodingCV, and a

'UserDefinedEncodingCV'.

<xs:element name="Encoding" type="EncodingRootType"/>

<xs:simpleType name="EncodingRootType">

 <xs:restriction base="ShortTokenType"/>

</xs:simpleType>

<xs:simpleType name="AdsMLEncodingCV">

 <xs:restriction base="EncodingRootType">

 ...

 <xs:enumeration value="base64Binary"/>

 ...

 </xs:restriction>

</xs:simpleType>

<xs:simpleType name="UserDefinedEncodingCV">

 <xs:restriction base="EncodingRootType">

 ...

 <xs:enumeration value="US-ASCII"/>

 ...

 </xs:restriction>

</xs:simpleType>

In an instance document, the user has choice in how they specify the value of the

Encoding element – either as a plain token, using the default root type, or as a

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 59 of 65

specific value, using a controlled vocabulary derived from it, substituting the

derived type using the xsi:type attribute. In the illustration below, all three

usage variants are shown – a plain (tokenized) string, the use of the AdsML

Controlled Vocabulary, and the use of a user defined controlled vocabulary,

...

<Encoding>base64</Encoding>

...

<Encoding xsi:type="AdsMLEncodingCV">base64Binary</Encoding>

...

<Encoding xsi:type="UserDefinedEncodingCV">US-ASCII</Encoding>

...

8.2 User defined controlled vocabularies
As explained in the previous sections, AdsML allows users to define and use

specific values in an AdsML instance wherever a root type has been set as the

type of an element context. If users need to define their own controlled

vocabularies to meet the requirements of their particular usage context, they

SHOULD do so by creating a user-extension XML Schema in which the user-defined

controlled vocabularies are defined. Even though such a formal schema definition

is not required by AdsML, it is recommended that one be created as it will enable

schema based validation and a formal, standard, definition language.

This section describes rules for creating user-defined controlled vocabularies, how

to create a user extension schema, and how to use these user extensions in an

AdsML instance document.

8.2.1 Rules for creating user-defined controlled
vocabularies

The following rules MUST be followed when deriving new controlled vocabularies:

 All derivation MUST be by restriction only, so as to ensure that the values of

derived types are a subset of their base root types

 When deriving from a complex root type, a restriction MUST NOT restrict any

attribute(s) declared on the complex root type. The occurrence of an

attribute MUST NOT be changed.

In addition, the following rules MUST be followed when deriving new controlled

vocabularies from pre-defined AdsML controlled vocabularies:

 All derivation can be done using either restriction or extension but MUST be

by restriction from the original root type used as a base for the AdsML

controlled vocabulary.

New types for controlled vocabulary values are defined by manipulating the base

type's 'constraining facets'. The constraining facets are the properties of a data

type that can be used to constrain the value space of a data type as defined by

W3C in “XML Schema Part 2: Data types”.

8.2.2 Creating user-defined controlled vocabularies
This section details how a user creates a user-defined controlled vocabulary by

deriving from a root type defined in the AdsML Type Library schema, deriving by

restriction only. As detailed in the previous section, root types can be simple or

complex, according to the context in which they appear.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 60 of 65

Deriving to specify properties for use in the Property element is identical to the

method for deriving from a simple root type, but conceptually differs in that the

name of the derived type is used to provide the name part of the property

name:value pair. Due to this, deriving property types has a separate section.

8.2.2.1 Deriving from a simple root type

When creating a controlled vocabulary from a simple root type and defining it

using XML Schema, the procedure is as follows,

 Create a new simple type, deriving the new type by restriction, specifying

the root type as the base

 Define the required values by using the constraining facets that can be

applied to the root type - i.e. the constraining facets that can be applied to

the base type of the root type

To illustrate, a user deriving from the ContactRoleRootType to create a list of the

people they are likely to contact - e.g. 'Advertiser', 'AdSpaceBuyer', 'AdAgency',

'ReproHouse', 'Deliverer', and 'Publisher'. The user,

1. Creates a new simple type by restriction, giving an appropriate name to

the simple type – e.g. 'AdvertisingContactCV'. The root type -

ContactRoleRootType - is specified as the base type of the new type

using the base attribute of the xs:restriction element nested inside the

xs:simpleType element.

<xs:simpleType name="AdvertisingContactCV">

 <xs:restriction base="ContactRoleRootType"></xs:restriction>

</xs:simpleType>

2. Decides which facet(s) to constrain in order to create the desired values

and then performs the necessary restriction. In this case, the root type

ContactTypeRootType is a string type derived from LongStringType and

so the user is able to specify values using the length, minLength,

maxLength, pattern, enumeration and whiteSpace constraining facets. The

user decides to specify the desired values of 'Advertiser',

'AdSpaceBuyer', 'AdAgency', 'ReproHouse', 'Deliverer', and 'Publisher'

as enumerated values, and specifies this using the enumeration facet,

enumerating the desired values using xs:enumeration elements nested

inside the xs:restriction element.

<xs:simpleType name="AdvertisingContactCV">

 <xs:restriction base="ContactTypeRootType">

 <xs:enumeration value="Advertiser"/>

 <xs:enumeration value="AdSpaceBuyer"/>

 <xs:enumeration value="ReproHouse"/>

 <xs:enumeration value="AdAgency"/>

 <xs:enumeration value="Deliverer"/>

 <xs:enumeration value="Publisher "/>

 </xs:restriction>

</xs:simpleType>

An instance would appear like this,

...

<Subject xsi:type="AdvertisingContactCV">Advertiser</Subject>

...

If greater flexibility is desired, the user specifies multiple facets. In this example,

the user derives a controlled vocabulary for recording advertising contacts. The

user doesn't want to specify precise values, rather to set minimum and maximum

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 61 of 65

lengths values of '5' and '10' so that only values between the lengths of 5-10

characters can be used.

<xs:simpleType name="UserMinMaxLengthAdvertisingContactCV">

 <xs:restriction base="ContactRoleRootType">

 <xs:minLength value="5"/>

 <xs:maxLength value="10"/>

 </xs:restriction>

</xs:simpleType>

An instance could appear like this,

...

<Subject

xsi:type="UserMinMaxLengthAdvertisingContactCV">UpToTenCha</Subject>

...

For more information about defining simple types, see XML Schema Part 1:

Structures, Section 3.14 Simple Type Definitions

(http://www.w3.org/TR/xmlschema-1/#Simple_Type_Definitions).

8.2.2.2 Deriving to specify Properties

Trading partners wishing to specify properties using the adsml:Property element

will have to derive and create their own property types. This is because AdsML

relies on the name of the derived type to provide the name part of a name:value

property pair. When using properties, the name is given by the xsi:type

attribute of the adsml:Property element in the instance, and the value is given

by the element data content of the adsml:Property. AdsML asserts this

constraint to control undefined property use in AdsML. The constraint effectively

restricts property use in AdsML to only specific properties that trading partners

have agreed to use in their business context and have specified in their extension

schemas. Consequently, if trading partners wish to use and validate properties

then they MUST specify a user extension schema.

Each required property is derived from PropertyRootType, with the name of the

derived property type being the name of the property as it will appear in the

instance. The procedure for deriving from PropertyRootType is as described in

the section „Deriving from a simple root type‟.

8.2.2.3 Deriving from a complex root type to specify element

content

A complex root type is different from a simple root type because it is derived by

extension, the extension used to add attribute(s) to the base type. These

attributes MUST NOT be altered when deriving from the complex root type to

create specific controlled vocabulary values. AdsML enforces this constraint by not

allowing extension of complex root types; root types MUST only be derived from

by restriction. Further attributes or children elements cannot be added to complex

root types, thereby ensuring that the underlying information model of AdsML is

not changed and so enforcing the interoperability of AdsML. The constraint is

enforced in the AdsML Schema by giving the block property of each complex root

type the value of 'extension', thereby preventing extension.8

8 Blocking extension on a complex root type prevents further attribute(s) being added to the root type
during the definition of a user-specific controlled vocabulary. Such an extension would not be an
'extension by restriction' as AdsML allows, but an extension to the information model of AdsML – i.e.
changing that information model by the addition of one or more attributes – and so is not allowed.
Setting block to extension enforces the AdsML 'extension by restriction' only constraint & ensures the
interoperability of AdsML.

http://www.w3.org/TR/xmlschema-1/#Simple_Type_Definitions

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 62 of 65

NOTE: Complex root type derivation is currently applicable to only one context,

the FormatRootType. The AdsML Technical WG will avoid introducing any other

cases of complex root type derivation, as the less complicated simple type

approach has been found to be sufficient.

When creating a controlled vocabulary from a complex root type, the procedure is

as follows,

 Create a new complex type, specifying the type as simple content. The new

type is derived by restriction, specifying the root type as the base

 Define the required values by using the constraining facets that can be

applied to the root type - i.e. the constraining facets that can be applied to

the base type of the root type

To illustrate, a user deriving from the FormatRootType to create a list of the

formats they use - e.g. 'AdsMLBookings', and two proprietary formats -

'InHouseXML', and 'PublisherProprietaryFormat'. The user does this as follows,

1. Creates a new complex type with simple content by restriction, giving an

appropriate name to the complex type – in this case, for example,

'UserFormatsCV'. The root type - FormatRootType - is specified as the

base type of the new type using the base attribute of the xs:restriction

element nested inside the xs:simpleContent child of the xs:complexType

element.

<xs:complexType name="UserFormatsCV">

 <xs:simpleContent>

 <xs:restriction base="FormatRootType"></xs:restriction>

 </xs:simpleContent>

</xs:complexType>

2. Decides which facet(s) to constrain in order to create the desired values

and then performs the necessary restriction. In this example, the user

decides to specify the desired values of 'AdConnexion', 'InHouseXML', and

'PublisherProprietaryFormat' as enumerations, using xs:enumeration

elements nested inside the xs:restriction element.

<xs:complexType name="UserFormatsCV">

 <xs:simpleContent>

 <xs:restriction base="FormatRootType">

 <xs:enumeration value="AdsMLBookings"/>

 <xs:enumeration value="InHouseXML"/>

 <xs:enumeration value="PublisherProprietaryFormat"/>

 </xs:restriction>

 </xs:simpleContent>

</xs:complexType>

An instance would appear like this,

...

<Format version="1.1" xsi:type="UserFormatsCV">AdsMLBookings</Format>

...

For more information about defining complex types, see XML Schema Part 1:

Structures, Section 3.4 Complex Type Definitions

(http://www.w3.org/TR/xmlschema-1/#Complex_Type_Definitions).

8.2.3 Creating a user extension schema
User-defined controlled vocabularies expressed using XML Schema are defined in

a user extension schema, with the user extension schema used in place of the

http://www.w3.org/TR/xmlschema-1/#Complex_Type_Definitions

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 63 of 65

relevant AdsML schema during instance creation and validation. Users MUST agree

any user-defined extensions to be used by them in the Trading Partnership

Agreement (TPA) that governs their business relationship and the Process

Partnership Agreement (PPA) that governs their AdsML processing arrangements.

Any user extension schema created MUST be specified in the Process Partnership

Agreement (PPA) so that they can be identified and accessed at the system level

by AdsML processors.

When creating an extension schema AdsML recommends that a target namespace

SHOULD be set for the extension schema, as per the reasons set out for

namespace use in the AdsML Envelope specification Section 2.5.5 AdsML

namespace. AdsML makes no recommendations as to whether users specify

schema version, identification, and language management for user-defined

extension schema (See the AdsML Envelope specification, Section 2.5.4 Schema –

version, identification, and language); users should record this information as

required by their business circumstances.

The procedure for creating a user extension schema is as follows,

 Create a new XML Schema, naming the schema to indicate that it is a user-

specific extension of the AdsML schema in question. For example,

'AdCoExtension-AdsMLEnvelope-1.1.xsd'

 Within the root xs:schema element, the user MUST,

a. Specify the namespace(s) of the AdsML Framework standards

required for the extension

 Within the root xs:schema element, the user SHOULD,

b. If specifying a namespace for the user extension schema, add a

targetNamespace attribute, assigning this attribute the value of the

namespace for the user extension schema. The user MAY assign a

prefix to the user namespace

c. Qualify the schema to show element and type namespace qualifiers

by assigning the elementFormDefault attribute the value of

'qualified'

d. Qualify the schema to hide attribute namespace qualifiers by

assigning attributeFormDefault attribute the value of

'unqualified'

 Within the root xs:schema element, the user MAY,

e. If specifying version, identification, and language information for

the user extension schema, specify this using the optional version,

id, and xml:lang attributes available for this purpose (See the

AdsML Envelope specification, Section 2.5.4 Schema – version,

identification, and language).

 Immediately after the xs:schema element, import the required AdsML

Framework Schema using xs:import element(s). The namespace attribute

of xs:import is assigned the value of the required AdsML schema

namespace. The schemaLocation attribute of xs:import may be assigned

the location of where the AdsML Schema being referenced is hosted.

 Define the required controlled vocabularies in the user extension schema, as

per the rules and procedures specified in this section.

To illustrate, user extension schema can appear as follows:

Namespace user extension schema declaration

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 64 of 65

<?xml version="1.0" encoding="UTF-8"?>

<xs:schema targetNamespace="http://www.user.com/adsml/userextension"

xmlns="http://www.user.com/adsml/userextension"

xmlns:xs="http://www.w3.org/2001/XMLSchema"

xmlns:adsml-en="http://www.adsml.org/adsmlenvelope/1.1"

xmlns:adsml="http://www.adsml.org/typelibrary/1.1"

xmlns:adsml-cv="http://www.adsml.org/controlledvocabularies/2.0"

elementFormDefault="qualified" attributeFormDefault="unqualified">

 <xs:import namespace="http://www.adsml.org/adsmlenvelope/1.1"

schemaLocation="AdsMLEnvelope-1.1-Main-AS.xsd"/>

 <xs:import namespace="http://www.adsml.org/typelibrary/1.1"

schemaLocation="AdsMLTypeLibrary-1.1-AS.xsd"/>

 <xs:import namespace="http://www.adsml.org/controlledvocabularies/2.0"

schemaLocation="AdsMLControlledVocabularies-2.0-AS.xsd"/>

<!-- controlled vocabulary type definitions here. -->

</xs:schema>

A no namespace version of the above would look almost identical, except for not

having the targetNamespace and default namespace defined (the xmlns

attribute).

8.2.4 Validating against user defined controlled
vocabularies

When validating against the controlled vocabularies defined in the user extension

schema, trading partners must replace the original AdsML schema with the user

extended schema importing the original AdsML schema. With this exception, the

process is otherwise identical to validation using original AdsML schemas.

AdsML E-commerce Usage Rules & Guidelines 15 April 2010

Copyright © 2010 AdsML Consortium. All rights reserved. Page 65 of 65

9 References
 [IETF RFC 2387] E. Levinson. The MIME Multipart/Related Content-type.

Internet Engineering Task Force (IETF), August 1998

(http://www.ietf.org/rfc/rfc2387.txt)

 [IETF RFC 1766] H. Alvestrand. Tags for the Identification of Languages.

Internet Engineering Task Force (IETF), Request for Comments: 1766,

March 1995 (http://www.ietf.org/rfc/rfc1766.txt)

 [ISO/IEC 10646] ISO (International Organization for Standardization).

ISO/IEC 10646-1993 (E). Information technology -- Universal Multiple-Octet

Coded Character Set (UCS) -- Part 1: Architecture and Basic Multilingual

Plane. International Organization for Standardization, 1993

 [W3C] W3C (World Wide Web Consortium). Ed. Tim Bray, Jean Paoli, C. M.

Sperberg-McQueen, Eve Maler, François Yergeau. Extensible Markup

Language (XML) 1.0 (Fourth Edition). W3C Recommendation, 16 August

2006, edited in place 29 September 2006. (http://www.w3.org/TR/REC-

xml).

10 Appendix A: Acknowledgement for

contributions to this document
Acknowledgement and thanks for contributions to this document are also due to:

 Members of the AdsML Technical Working Group,

o Christian Ratenburg (CCI Europe) – cr@ccieurope.com

http://www.ietf.org/rfc/rfc2387.txt
http://www.ietf.org/rfc/rfc1766.txt
http://www.w3.org/TR/REC-xml
http://www.w3.org/TR/REC-xml
mailto:cr@ccieurope.com

