
AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 1 of 68

AdsML® Framework for E-Commerce
Business Standards for Advertising

AdsMLEnvelope 1.1.4

Part 1

Processing Model, Usage Rules & Guidelines

Document Authors: AdsML Technical Working Group

Document ID: AdsMLEnvelope-1.1.4-SpecP1Usage-AS-5

Document File Name: AdsMLEnvelope-1.1-SpecP1Usage-AS.pdf

Document Status: Approved Specification

Document Date: 30 June 2009

Draft Number: 5

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 2 of 68

Table of Contents
1 ADSML STA	DARD DOCUME	TATIO	 ... 5

1.1 DOCUMENT STATUS AND COPYRIGHT .. 5

1.2 NON-EXCLUSIVE LICENSE AGREEMENT FOR ADSML CONSORTIUM SPECIFICATIONS 5

1.3 ADSML CODE OF CONDUCT .. 7

1.4 DOCUMENT NUMBER AND LOCATION .. 8

1.5 PURPOSE OF THIS DOCUMENT... 8

1.6 AUDIENCE .. 8

1.7 ACCOMPANYING DOCUMENTS ... 9

1.8 DEFINITIONS & CONVENTIONS ... 9

1.8.1 Definitions of key words used in this document .. 9

1.8.2 �aming conventions – element, attribute, type, and file names .. 9

1.8.3 Typographical conventions ... 10

1.9 CHANGE HISTORY ... 10

1.10 ACKNOWLEDGEMENTS .. 10

1.11 THE ADSML CONSORTIUM .. 11

2 I	TRODUCTIO	... 12

2.1 THE ADSML ENVELOPE .. 12

2.1.1 Overview ... 13

2.1.2 Why this approach? .. 14

2.1.3 Conformance ... 15

2.1.4 Item-level message choreography ... 15

2.2 THE ADSMLENVELOPE INFORMATION EXCHANGE PROCESS ... 15

2.3 ITEM AND RESPONSE – OPERATIONAL AND MESSAGING DATA ... 16

2.3.1 Operational data – advertising content data .. 16

2.3.2 Messaging data – AdsMLEnvelope response data .. 16

2.3.3 Testing ... 17

2.3.4 Globally unique identifiers .. 17

2.4 HOW ADSMLENVELOPE RELATES TO OTHER STANDARDS RELEVANT TO THE ADVERTISING

PROCESS... 18

3 ADSMLE	VELOPE CHOREOGRAPHY .. 19

3.1 ENVELOPE RESPONSE MESSAGES .. 19

3.1.1 Envelope addresses ... 19

3.2 ENVELOPE EXCHANGE PATHS .. 20

3.2.1 Direct exchanges ... 20

3.2.2 Indirect exchanges .. 21

3.3 REPACKAGING ... 22

4 PROCESSI	G MODEL A	D ROUTI	G SCE	ARIOS ... 23

4.1 TERMS AND CONCEPTS ... 23

4.2 ADSMLENVELOPE ARCHITECTURE .. 25

4.2.1 Overview ... 25

4.2.2 Content creation – single source ... 26

4.2.3 Content creation – multiple sources.. 27

4.2.4 Content reception .. 28

4.2.5 Two-way information flow .. 29

4.2.6 Role playing .. 30

4.3 SOURCE AND NATURE OF ADDRESSING INFORMATION ... 34

4.3.1 Where does it come from? ... 34

4.3.2 Who does it go to? ... 35

4.4 ITEM-LEVEL ADDRESSING METADATA ... 35

4.4.1 Addressing metadata ... 35

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 3 of 68

4.4.2 Maintenance of the Item History ... 36

4.4.3 Other metadata ... 37

4.4.4 ItemHeader vs. ContentHeader metadata ... 37

4.5 ENVELOPE-LEVEL ADDRESSING METADATA ... 38

4.5.1 Transport mechanism and physical address ... 38

4.5.2 Contact information .. 38

4.6 REDIRECTION CAPABILITIES AND IMPLICATIONS .. 38

4.6.1 Redirection basics ... 39

4.6.2 Redirection responsibilities and requirements .. 39

4.7 ADDRESSING SCENARIOS ... 40

4.7.1 Scenario 1: Originator to Destination .. 40

4.7.2 Scenario 2a: Originator to Destination via an Intermediary that does not change the content

 41

4.7.3 Scenario 2b: Originator to Destination via an Intermediary that touches the content 43

5 PROCESS PART	ERSHIP AGREEME	T .. 45

5.1 ACCESS TO RULES AND “ADSMLENVELOPE METADATA” .. 45

5.2 RELATIONSHIP TO A TRADING PARTNER AGREEMENT ... 45

5.3 INTERMEDIARY AND ON-BEHALF-OF BUSINESS PARTNERS ... 45

5.4 PPA FORMAT AND CONTENTS ... 46

6 RESPO	SE CHOREOGRAPHY.. 48

6.1 TRANSMISSION/RESPONSE MODES.. 48

6.1.1 “Send and forget” ... 48

6.1.2 “Store and resend until acknowledged” ... 49

6.2 PRODUCTION AND TEST MODES ... 50

6.2.1 Test Items .. 51

6.3 RESPONSES .. 52

6.3.1 Response addressee ... 52

6.3.2 Response priority .. 52

6.3.3 Upstream error notification .. 52

6.3.4 Response to Responses .. 52

6.3.5 The responseRequired Attribute .. 52

7 ERROR HA	DLI	G ... 53

7.1 NON-ACCEPTANCE ... 54

7.1.1 Error definition ... 54

7.1.2 Error handling .. 54

7.2 CATASTROPHIC ERRORS ... 54

7.2.1 Error definitions .. 54

7.2.2 Error handling .. 55

7.3 ITEM ERRORS ... 55

7.3.1 Error definitions .. 55

7.3.2 Error handling .. 55

8 PRIORITY HA	DLI	G .. 57

8.1 OVERVIEW ... 57

8.2 OPERATIONAL REQUIREMENTS .. 57

8.2.1 Processing ... 57

8.2.2 Values .. 57

9 RESPO	SIBILITIES OF ADSMLE	VELOPE PROCESSORS .. 58

9.1 RESPONSIBILITIES OF AN ITEM CREATOR ... 58

9.1.1 Encoding ... 58

9.1.2 Responsibilities list ... 58

9.2 RESPONSIBILITIES OF AN ITEM REDIRECTOR .. 59

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 4 of 68

9.3 RESPONSIBILITIES OF AN ENVELOPE PACKAGER .. 59

9.4 RESPONSIBILITIES OF AN ENVELOPE RECEIVER ... 59

9.5 RESPONSIBILITIES OF AN ITEM CONTENT UNPACKER .. 60

9.6 RESPONSIBILITIES OF A RESPONSE CREATOR ... 61

9.7 RESPONSIBILITIES OF A RESPONSE PROCESSOR ... 61

10 CO	FORMA	CE .. 62

10.1 APPROACH ... 62

10.2 CONFORMANCE LEVELS ... 62

10.2.1 Core .. 62

10.2.2 Level 1 ... 62

10.2.3 Level 2 ... 63

10.3 CONFORMANCE REQUIREMENTS .. 63

10.3.1 Allowable Item content .. 63

10.3.2 Alternative representations of the same advertising information ... 64

10.3.3 Communication with internal systems ... 64

10.3.4 Creation of AdsMLEnvelope messages ... 64

10.3.5 Message logging ... 64

10.3.6 Message resending .. 64

10.3.7 Processing model .. 65

10.3.8 Response requirement ... 65

10.3.9 Redirection .. 65

10.3.10 System testing .. 65

10.3.11 Transmission/Response modes .. 65

10.3.12 Validation and feedback .. 65

10.3.13 Verification and feedback ... 66

11 APPE	DIX A: ACK	OWLEDGEME	T FOR CO	TRIBUTIO	S TO THIS DOCUME	T

 67

12 APPE	DIX B: I	TERMEDIARY A	D O	-BEHALF-OF BUSI	ESS PART	ERS 68

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 5 of 68

1 AdsML Standard Documentation

1.1 Document status and copyright
This is the Approved Specification of the AdsML® Envelope Processing Model, Usage

Rules & Guidelines. It is a draft document and may be updated, replaced, or made

obsolete by other documents at any time. It is inappropriate to use AdsML Proposed

Specifications as reference material or to cite them as other than "work in progress".

Copyright © 2009 AdsML Consortium. All rights reserved. Information in this

document is made available for the public good, may be used by third parties and

may be reproduced and distributed, in whole and in part, provided acknowledgement

is made to AdsML Consortium and provided it is accepted that AdsML Consortium

rejects any liability for any loss of revenue, business or goodwill or indirect, special,

consequential, incidental or punitive damages or expense arising from use of the

information.

Copyright Acknowledgements: The AdsML Non-Exclusive License Agreement is based

on the “Non-Exclusive License Agreement” on Page iii of "OpenTravel™ Alliance

Message Specifications – Publication 2001A", September 27, 2001, Copyright ©

2001. OpenTravel™ Alliance, Inc. The AdsML Code of Conduct is based on the “OTA

Code of Conduct” on Page ix of "OpenTravel™ Alliance Message Specifications –

Publication 2001A", September 27, 2001, Copyright © 2001. OpenTravel™ Alliance,

Inc.

1.2 Non-Exclusive License Agreement for

AdsML Consortium Specifications

USER LICENSE

IMPORTANT: AdsML Consortium specifications and related documents, whether the

document be in a paper or electronic format, are made available to you subject to

the terms stated below. Please read the following carefully.

1. All AdsML Consortium Copyrightable Works are licensed for use only on the

condition that the users agree to this license, and this work has been provided

according to such an agreement. Subject to these and other licensing

requirements contained herein, you may, on a non-exclusive basis, use the

Specification.

2. The AdsML Consortium openly provides this specification for voluntary use by

individuals, partnerships, companies, corporations, organizations and any

other entity for use at the entity’s own risk. This disclaimer, license and

release is intended to apply to the AdsML Consortium, its officers, directors,

agents, representatives, members, contributors, affiliates, contractors, or

coventurers (collectively the AdsML Consortium) acting jointly or severally.

3. This document and translations of it may be copied and furnished to others,

and derivative works that comment on or otherwise explain it or assist in its

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 6 of 68

implementation may be prepared, copied, published and distributed, in whole

or in part, without restriction of any kind, provided that the above copyright

notice and this Usage License are included on all such copies and derivative

works. However, this document itself may not be modified in any way, such

as by removing the copyright notice or references to the AdsML Consortium,

except as needed for the purpose of developing AdsML specifications, in which

case the procedures for copyrights defined in the AdsML Process document

must be followed, or as required to translate it into languages other than

English. The limited permissions granted above are perpetual and will not be

revoked by AdsML or its successors or assigns.

4. Any use, duplication, distribution, or exploitation of the Specification in any

manner is at your own risk.

5. NO WARRANTY, EXPRESSED OR IMPLIED, IS MADE REGARDING THE

ACCURACY, ADEQUACY, COMPLETENESS, LEGALITY, RELIABILITY OR

USEFULNESS OF ANY INFORMATION CONTAINED IN THIS DOCUMENT OR IN

ANY SPECIFICATION OR OTHER PRODUCT OR SERVICE PRODUCED OR

SPONSORED BY THE ADSML CONSORTIUM. THIS DOCUMENT AND THE

INFORMATION CONTAINED HEREIN AND INCLUDED IN ANY SPECIFICATION

OR OTHER PRODUCT OR SERVICE OF THE ADSML CONSORTIUM IS

PROVIDED ON AN "AS IS" BASIS. THE ADSML CONSORTIUM DISCLAIMS ALL

WARRANTIES OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT

LIMITED TO, ANY ACTUAL OR ASSERTED WARRANTY OF NON-INFRINGEMENT

OF PROPRIETARY RIGHTS, MERCHANTABILITY, OR FITNESS FOR A

PARTICULAR PURPOSE. NEITHER THE ADSML CONSORTIUM NOR ITS

CONTRIBUTORS SHALL BE HELD LIABLE FOR ANY IMPROPER OR INCORRECT

USE OF INFORMATION. NEITHER THE ADSML CONSORTIUM NOR ITS

CONTRIBUTORS ASSUME ANY RESPONSIBILITY FOR ANYONE'S USE OF

INFORMATION PROVIDED BY THE ADSML CONSORTIUM. IN NO EVENT SHALL

THE ADSML CONSORTIUM OR ITS CONTRIBUTORS BE LIABLE TO ANYONE

FOR DAMAGES OF ANY KIND, INCLUDING BUT NOT LIMITED TO,

COMPENSATORY DAMAGES, LOST PROFITS, LOST DATA OR ANY FORM OF

SPECIAL, INCIDENTAL, INDIRECT, CONSEQUENTIAL OR PUNITIVE DAMAGES

OF ANY KIND WHETHER BASED ON BREACH OF CONTRACT OR WARRANTY,

TORT, PRODUCT LIABILITY OR OTHERWISE.

6. The AdsML Consortium takes no position regarding the validity or scope of

any intellectual property or other rights that might be claimed to pertain to

the implementation or use of the technology described in this document or

the extent to which any license under such rights might or might not be

available. The AdsML Consortium does not represent that it has made any

effort to identify any such rights. Copies of claims of rights made available for

publication, assurances of licenses to be made available, or the result of an

attempt made to obtain a general license or permission for the use of such

proprietary rights by implementers or users of this specification, can be

obtained from the Secretariat of the AdsML Consortium.

7. By using this specification in any manner or for any purpose, you release the

AdsML Consortium from all liabilities, claims, causes of action, allegations,

losses, injuries, damages, or detriments of any nature arising from or relating

to the use of the Specification or any portion thereof. You further agree not to

file a lawsuit, make a claim, or take any other formal or informal legal action

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 7 of 68

against the AdsML Consortium, resulting from your acquisition, use,

duplication, distribution, or exploitation of the Specification or any portion

thereof. Finally, you hereby agree that the AdsML Consortium is not liable for

any direct, indirect, special or consequential damages arising from or relating

to your acquisition, use, duplication, distribution, or exploitation of the

Specification or any portion thereof.

8. This User License is perpetual subject to your conformance to the terms of

this User License. The AdsML Consortium may terminate this User License

immediately upon your breach of this agreement and, upon such termination

you will cease all use duplication, distribution, and/or exploitation in any

manner of the Specification.

9. This User License reflects the entire agreement of the parties regarding the

subject matter hereof and supercedes all prior agreements or representations

regarding such matters, whether written or oral. To the extent any portion or

provision of this User License is found to be illegal or unenforceable, then the

remaining provisions of this User License will remain in full force and effect

and the illegal or unenforceable provision will be construed to give it such

effect as it may properly have that is consistent with the intentions of the

parties. This User License may only be modified in writing signed by an

authorized representative of the AdsML Consortium. This User License will be

governed by the law of Darmstadt (Federal Republic of Germany), as such law

is applied to contracts made and fully performed in Darmstadt (Federal

Republic of Germany). Any disputes arising from or relating to this User

License will be resolved in the courts of Darmstadt (Federal Republic of

Germany). You consent to the jurisdiction of such courts over you and

covenant not to assert before such courts any objection to proceeding in such

forums.

10. Except as expressly provided herein, you may not use the name of the AdsML

Consortium, or any of its marks, for any purpose without the prior consent of

an authorized representative of the owner of such name or mark.

IF YOU DO NOT AGREE TO THESE TERMS PLEASE CEASE ALL USE OF THIS

SPECIFICATION NOW. IF YOU HAVE ANY QUESTIONS ABOUT THESE TERMS, PLEASE

CONTACT THE SECRETARIAT OF THE ADSML CONSORTIUM.

AS OF THE DATE OF THIS REVISION OF THE SPECIFICATION YOU MAY CONTACT

THE AdsML Consortium at www.adsml.org.

1.3 AdsML Code of Conduct

The AdsML Code of Conduct governs AdsML Consortium activities. A reading or

reference to the AdsML Code of Conduct begins every AdsML activity, whether a

meeting of the AdsML Consortium, AdsML Working Groups, or AdsML conference calls

to resolve a technical issue. The AdsML Code of Conduct says:

Trade associations are perfectly lawful organizations. However, since a trade

association is, by definition, an organization of competitors, AdsML Consortium

members must take precautions to ensure that we do not engage in activities which

can be interpreted as violating anti-trust or other unfair competition laws.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 8 of 68

For any activity which is deemed to unreasonably restrain trade, AdsML, its members

and individual representatives may be subject to severe legal penalties, regardless of

our otherwise beneficial objectives. It is important to realize, therefore, that an

action that may seem to make "good business sense" can injure competition and

therefore be prohibited under the antitrust or unfair competition laws.

To ensure that we conduct all meetings and gatherings in strict compliance with any

such laws and agreements in any part of the world, the AdsML Code of Conduct is to

be distributed and/or read aloud at all such gatherings.

• There shall be no discussion of rates, fares, surcharges, conditions, terms or

prices of services, allocating or sharing of customers, or refusing to deal with

a particular supplier or class of suppliers. Neither serious nor flippant remarks

about such subjects will be permitted.

• AdsML shall not issue recommendations about any of the above subjects or

distribute to its members any publication concerning such matters. No

discussions that directly or indirectly fix purchase or selling prices may take

place.

• There shall be no discussions of members’ marketing, pricing or service plans.

• All AdsML related meetings shall be conducted in accordance with a previously

prepared and distributed agenda.

• If you are uncomfortable about the direction that you believe a discussion is

heading, you should say so promptly.

Members may have varying views about issues that AdsML deals with. They are

encouraged to express themselves in AdsML activities. However, official AdsML

communications to the public are the sole responsibility of the AdsML Consortium. To

avoid creating confusion among the public, therefore, the Steering Committee must

approve press releases and any other forms of official AdsML communications to the

public before they are released.

1.4 Document Number and Location
This document, Document Number AdsMLEnvelope-1.1.4-SpecP1Usage-AS-5, is

freely available. It is located at the AdsML website at http://www.adsml-

framework.org/.

1.5 Purpose of this document
This document is intended to provide guidance to implementers of AdsMLEnvelope

Processors.

This document describes the envelope processing model and addressing constructs

that the AdsMLEnvelope was designed to support, and defines what is required in

order for an implementation to conform to the AdsMLEnvelope standard. As such, it

focuses on processing and routing the AdsMLEnvelope, and does not deal with the

AdsML Item-level standards.

1.6 Audience
The intended audience for this document is actual or prospective implementers of

AdsML Envelope processors.

Comments on this document should be addressed to the Technical Working Group of

the AdsML Consortium (technical.wg@adsml.org).

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 9 of 68

1.7 Accompanying documents
This document serves as the reference guide to the AdsMLEnvelope messages to

address specific business requirements. A companion document, AdsMLEnvelope –

Part 2 - Specification & Schema, provides additional rules and guidance for using

AdsML Envelope schema. They are meant to be read together.

In addition, elements and structures that are used in multiple AdsML schemas are

documented in the AdsML Type Library specification. AdsMLEnvelope makes

extensive use of such structures, therefore the Type Library specification is an

essential reference.

All three documents are part of the AdsML Framework, which contains a suite of

related documents. Readers of this document are assumed to be familiar with the full

range of relevant AdsML documentation. In particular, readers are assumed to have

read the E-Commerce Usage Rules and Guidelines document. A description of the

entire document set can be found in the ReadMeFirst html file associated with this

release of the Framework.

1.8 Definitions & conventions

1.8.1 Definitions of key words used in this document
The key words "MUST", "MUST NOT", "REQUIRED", "SHALL", "SHALL NOT", "SHOULD",

"SHOULD NOT", "RECOMMENDED", "MAY", and "OPTIONAL" in this document are used as

described in IETF RFC 2119.(S. Bradner. Key words for use in RFCs to Indicate

Requirement Levels. Internet Engineering Task Force (IETF), Request for Comments:

2119, March 1997, http://www.ietf.org/rfc/rfc2119.txt)

When any of these words do not appear in upper case as above, then they are being

used with their usual English language sense and meaning.

1.8.2 Naming conventions – element, attribute, type,
and file names

All element, attribute, and type names follow the 'CamelCase' convention.

Element and type names begin using upper camel case and begin with capitals

(UpperCamelCase). For example, ‘AdsML’, ‘MessageRef’, and ‘AdsMLStatusType’.

Attribute names begin using lower camel case and begin with lower case

(lowerCamelCase). For example, ‘language’ or ‘messageId’.

File names also follow the camel case convention and use upper camel case for each

segment of the file name, plus dashes to separate the segments of the file name.

Only the first two digits of the version number are included in the file name. The

third digit of the version number (if there is one) and the Draft Number are only

shown internally within the document. The full naming conventions for AdsML

schema and specification file names are described in the document AdsML Document

Names and Identifiers – Guidelines and Examples, a copy of which is included in this

release of the Framework.

Schema for user-defined extensions to AdsML should use AdsML naming conventions

as detailed above. For example, ‘ExampleInstanceFile.xml’, ‘ExampleSchemaFile-

1.0.xsd’, ‘ExampleSchemaFile-1.1.xsd’.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 10 of 68

1.8.3 Typographical conventions
Element and type names are given in Courier font as, for example, AdOrder.

Attribute names are given in italicized Courier font as, for example, messageCode.

When citing examples of values that could be assigned to elements or attributes, the

value is given in Courier font, so “…the attribute taking the value of ‘12’.”.

1.9 Change History

Draft Date Changes Author

1.1.4-AS-5 30 June

2009

Edited to incorporate introductory

material that had previously been in the

Framework Overview

TS

1.1.3-AS-4 10 October

2007

• Updated to import AdsML Type

Library 2.0

• Editorial

JC

1.1.2-AS-3 1 Oct 2006 Changed to Controlled Vocabulary 3.0.

No other changes.

UW

1.1.1-AS-2 1 Oct 2006 AdsML references updated to reflect

Registered Trademark status

TS

1.1.0-AS-1 1 June

2006

Refactored schema to use common

components from the AdsML Type

Library schema.

Changes affect new namespace and a

few other minor schema structures

leading to that 1.1 document instances

are not backwards compatible with 1.0

document instances. However, no

changes in functionality and processing

model.

Renamed “AdsML” to “AdsMLEnvelope”,

as “AdsML” now covers the complete

framework of AdsML standards.

Overviews of the AdsML approach as

well as other general documentation

have been moved to other non-standard

specific documents.

TS, UW

1.0.1-AS-2 1 July 2005 Revised the document name and

number to conform to current AdsML

Framework documentation guidelines.

Clarified that this document is about the

AdsML Envelope rather than Item-level

AdsML messages. This required many

small terminology changes.

TS

1.0.0-AS-1 17 May

2004

Approved Specification. Earlier change

history removed.

TS

1.10 Acknowledgements
This document is a product of the AdsML Technical Working Group.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 11 of 68

Primary authorship and editing of the first version was performed by:

• Tony Stewart (RivCom) - tony.stewart@rivcom.com

Primary authorship and editing of the succeeding versions were performed by:

• Tony Stewart (RivCom) - tony.stewart@rivcom.com

• Ulf Wingstedt (CNetSvenska AB) - ulf.wingstedt@cnet.se

Portions are based on material written by:

• John Iobst (NAA) - iobst@naa.org

Acknowledgements and thanks to other contributors for additional input to this

document are listed in Appendix A: Acknowledgement for contributions to this

document.

1.11 The AdsML Consortium
The documents comprising the AdsML standard were written by the AdsML Technical

Working Group, a committee charged with creating the consortium’s technical

deliverables, and then approved by the entire membership.

More information about the consortium can be found on the consortium’s website:

www.adsml.org.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 12 of 68

2 Introduction
The AdsML Framework of E-commerce Business Standards consists of a growing set

of standards that are designed to work together to implement e-commerce

communications and solve specific business problems in the advertising workflow.

These standards exist at two levels:

• the “AdsMLEnvelope” standard defines an XML delivery envelope that can

convey any number of business messages between two trading partners;

• a set of “Item-level” e-commerce standards define XML message formats for

specific types of information or transactions, for example, insertion orders,

invoices or artwork.

The AdsML Item-level standards are so called because they define message formats

that can be used as “Items” in AdsMLEnvelope. Use of AdsMLEnvelope, while

encouraged, is optional, and the Item-Level standards can be used both inside and

outside of AdsMLEnvelope.

2.1 The AdsML Envelope

The AdsML Envelope is used for exchanging and sharing information – business

messages – while executing business processes during the advertising lifecycle. To

achieve this exchange requires the establishment of a defined choreography between

information senders and receivers. This will allow for the proper level of

communication among all of the partners and make the business work smoothly.

Within a given organization, there will be a number of software systems that are

each capable of processing one or more of the Item types that AdsML normally

transmits – for example, booking systems, publishing systems, accounting systems,

etc. From the perspective of AdsML, these software systems are “Item-level”

applications, because they create and consume the Items that are transmitted inside

the AdsML Envelopes.

So, a given organization is likely to have a number of Item-level applications. These

Item-level applications need to send information both between themselves within the

organization, and also externally to Item-level applications at other organizations

with which they do business.

The same organization will probably have only one AdsML processor. The AdsML

processor is a software system1 designed to process AdsML Envelopes, where

“processing” includes creating, transmitting, receiving and responding to them. It will

usually be positioned close to the gateway between its organization’s

communications systems and the outside world2.

As shown in the illustration below, when an organization wishes to send advertising

content Items to its trading partners, the Item-level applications within the

organization generate the appropriate information objects, wrap them in some

AdsML-specific metadata, and send them internally to the organization’s AdsML

processor for packaging. The AdsML processor receives these Items from the Item-

level applications, packages them into one or more AdsML Envelopes (each of which

1 The AdsML Consortium does not provide software, including AdsML Processors.
2 It is also possible to use AdsML for communications between systems within a single organization.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 13 of 68

is addressed to a single external organization), and then sends each AdsML Envelope

to its recipient organization.

AdsML

Processor

Item

Creator

Item

Creator

Item

Creator

AdsML

Processor
Item

Consumer

Item

Consumer

Item

Consumer

The recipient organization’s AdsML Processor receives each incoming AdsML

Envelope, un-packs it into its component Items, and then routes each of these Items

internally to the appropriate Item-level application. Each Item that arrives at a

recipient’s internal Item-level application is effectively identical to the Item that was

created by the sender’s Item processor. At this point the AdsML Envelope no longer

exists. It served its purpose by transporting the Items from the sender organization

to the recipient organization.

2.1.1 Overview
Conceptually, the AdsML Envelope serves as a “wrapper”, or container, that

facilitates the exchange of messages (such as those defined in the Advertising

Component Interactions) between trading partners in the advertising lifecycle. While

it is possible that the AdsML Envelope may be used to improve communication

between internal systems within a given organization, its primary purpose is to

facilitate external communications between an organization and its trading partners.

Structurally, the AdsML Envelope schema defines an envelope consisting of a header

and a body. The header contains information necessary to route, process, and

respond to the AdsML message, and the body contains the advertising data content

itself, in the form of one or more AdsML Items. The Item content can be encoded

either in one of the existing advertising industry XML standards, or in a non-XML

format such as an EDI standard or even a comma-delimited file. The only

requirement is that the parties that are exchanging the information need to agree in

advance on the format that they will use to exchange this type of information, and

the format has to be able to be placed inside an XML document.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 14 of 68

AdsML Envelope

Items inside the envelope (as many as desired)

Header (information about the
message as a whole)

Item 1

Campaign
Brief

Item 2

Request for
Quotation

Item 3

Insertion
Order

Item 4

Display Ad

Item 5

Classified
Ad

Item 6

Payment
Details

Consequently, the AdsML envelope serves multiple goals – enabling process

automation, allowing continued use of existing investments in technological

infrastructure, and the provision of a common interface to facilitate systems

integration.

The Envelope Processing Model, Addressing and Operational Conformance

documentation describes the types of processing that the AdsML Envelope was

designed to support. It provides diagrams and descriptions of the components of an

AdsML Processor, along with examples of how some of the key elements and

attributes in the AdsML Envelope can be used to support common types of message

processing.

2.1.2 Why this approach?
The advantage of the AdsML Envelope approach to message handling is that it helps

businesses integrate and handle the complexity of exchanging information between

multiple systems and multiple business partners. Rather than having to define

multiple 'point to point' integrations with all of their trading partners, each partner

handles this integration by implementing a single AdsML interface.

The complexity of integration – i.e. of how many formats and types of Items you are

likely to receive – is controlled by the use of the AdsML Envelope interface, and by

the Process Partnership Agreement (PPA) determining the information that can be

sent to you.

The control is flexible at business and technical levels – the business can expand with

the evolution of its PPAs. When the business requires the introduction of further

systems to handle new types of information, then the single AdsML interface to the

outside world remains, while giving it the freedom to extend the functionality of its

AdsML processor and of the Item-level applications to which that processor is

connected.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 15 of 68

2.1.3 Conformance
The AdsML Framework includes a definition of what is required for a system built to

process AdsML Envelopes to be AdsML conformant. AdsML conformance is provided

at core and enhanced levels, enhanced levels successively graded by their provision

of additional functionality. Providing multiple 'conformance levels' allows basic and

advanced AdsML systems to be developed according to the business requirements of

the individual usage scenario, enabling a system applicable to the individual

circumstances to be installed while providing a basis for incremental future

development.

2.1.4 Item-level message choreography
Item-level choreography defines the pattern of back-and-forth communication

between the applications in each organization. This choreography is usually much

more complex than the AdsML Envelope choreography, because these Items are the

lifeblood of the advertisement supply chain, and their interchange defines and

supports the organization’s business processes. Every organization will have a

number of rules indicating under what circumstances different types of business

messages must be sent, acknowledged, queried, refused, altered, etc. The interplay

of such rules between two organizations results in an intricate dance of messages

flowing back and forth.

The AdsML Framework exists to support this Item-level message choreography, but

the AdsML processor remains completely unaware of it. The AdsML processor and the

AdsML Envelope format treat the Items that they carry as “black boxes”, and handle

them in exactly the same way regardless of whether they are advertising content,

queries, responses, acknowledgements, etc. The AdsML processor acts on

instructions received from the Item-level applications in a relatively simple way,

adding value through its role as a form of “smart transportation”, but not interacting

with the underlying business processes in any other way. All of the logic and rules

governing the flow of these messages must reside in the Item-level applications that

create and consume them.

2.2 The AdsMLEnvelope information exchange

process
AdsMLEnvelope operates on a send and response model. As the name indicates, the

AdsMLEnvelope standard provides 'envelope' messages for sending information. An

AdsMLEnvelope message can contain 2 types of information - 'Item(s)' and

'Response(s)'. Advertising data is exchanged in 'Item(s)'. When responding to

'envelopes' that have been received, AdsMLEnvelope message response information

is exchanged in 'Response(s)'.

The extent of the response process needs to be determined as part of the Trading

Partner Agreement (TPA) and Process Partnership Agreement (PPA) establishment

between trading partners. It is possible to control the level of response associated

with each message that is exchanged. The AdsMLEnvelope message itself will have a

predetermined set of responses, and the level to which response information is

exchanged between sender and recipient of an AdsMLEnvelope message can be

agreed and so controlled by the terms established in their PPA.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 16 of 68

The Trading Partner Agreement (TPA) is the legal undertaking establishing the terms

and conditions under which trading partners will conduct business with one another

and that the trading partners agree to abide by.

The Process Partnership Agreement (PPA) specifies the information that must be

available to an AdsMLEnvelope Processor on a “per partner” basis. That is, for each

partner organization or sub-organization with which an organization agrees to

exchange AdsMLEnvelope messages, the information required by the PPA must be

known and available to the appropriate AdsMLEnvelope Processor(s).

2.3 Item and Response – operational and

messaging data
As the preceding sections show, the AdsMLEnvelope message is essentially a

management structure for the exchange of advertising data among the interested

parties. That advertising data is carried either inside Item element(s) or inside

Response element(s) and falls into two categories, operational data and

messaging data respectively. Operational data is the actual advertising data being

exchanged and will be carried as ContentData nested inside an Item. Messaging

data is AdsML response data that is used in the message exchange and monitoring

process and will be carried as ResponseContent nested inside a Response. An

AdsMLEnvelope message may contain multiple Item elements or a single Response

element.

2.3.1 Operational data – advertising content data
The operational data (carried inside Item element(s)) comprises the advertising data

that business partners have to exchange with one another as part of the execution of

the advertising processes and workflows required to create and publish an

advertisement from initial placement to final airing.

The AdsMLEnvelope specification does not prescribe any specific format(s) for the

operational data itself; rather it provides an envelope for exchanging that data. It is

thus open for any kind of text-based formats for operational data that can be carried

inside an XML message without harming its well-formed structure. It is assumed that

most formats will be XML based, but also legacy formats such as comma-separated

files can be handled.

AdsMLEnvelope messages do not directly transfer binary objects as operational data.

A binary object would have to be wrapped in some kind of metadata rich format that

would either include the object encoded into XML text, or include a reference to an

external resource.

2.3.2 Messaging data – AdsMLEnvelope response data
The messaging data (carried inside Response element(s)) is AdsMLEnvelope

response data – AdsMLEnvelope technical data used for functions like acknowledging

the receipt of or reporting an error with an AdsMLEnvelope message or during

testing. Messaging data applies to AdsMLEnvelopes messages themselves, is used to

communicate responses at the envelope level, and is only concerned with

AdsMLEnvelope messages. Messaging data has no relevance to Item level data, and

so contains no references to Items; it should not be confused with Item level

response data. Item level response data – for example a reply acknowledging the

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 17 of 68

receipt of an insertion order or requesting a resend of artwork - is operational data

and so would be carried inside Item elements and not in Response elements.

2.3.3 Testing
AdsMLEnvelope allows a message sender to send a test message to one or more

receivers and receive appropriate test responses in return. Testing is at the envelope

level and tests the AdsMLEnvelope message 'envelope' and the AdsMLEnvelope

message response mechanism. Responses MUST be sent during testing.

To test an AdsMLEnvelope message, a message is sent and identified as an envelope

test by setting the value of the status attribute of the message's Header element to

'EnvelopeTest'. When responding to an envelope test, a message is sent and

identified as a response to the envelope test by setting the value of the status

attribute of the Header element to 'ResponseToEnvelopeTest' and by also specifying a

Response element child to the AdsMLEnvelope root element of the message,

assigning the value of the status attribute of the MessageRef child element of the

ResponseHeader element the value of 'EnvelopeTest'.

2.3.4 Globally unique identifiers
AdsML messages (of all types) and any individual Item(s), ItemContent(s), or

Response(s) contained inside an AdsML Envelope MUST have a globally unique

identifier. These identifiers are defined as QIDType types, defined in the AdsML Type

Library. The structural rules for these values are described in the AdsML E-Commerce

Usage Rules & Guidelines document.

The globally unique identifiers are recorded as attribute values, as follows,

• AdsMLEnvelope – a messageId attribute on the Header element records a

globally unique identifier for the AdsMLEnvelope message

• Item– an itemId attribute on the Item element records a globally unique

identifier for an item

• Item content –

• An itemContentId attribute on the ItemContent element records a globally

unique identifier for item content inside an item

• Error reporting content -

• An itemInEnvelope attribute on the ErrorLocation element identifies the

Item in which an error is located by recording the value of the itemId of the

Item in question

• Response –

• A responseId attribute on the Response element records a globally unique

identifier for a response

• A messageId attribute on the MessageRef child element of the

ResponseHeader element identifies the AdsMLEnvelope message to which a

response refers by recording the value of the messageId of the message

being responded to.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 18 of 68

2.4 How AdsMLEnvelope relates to other

standards relevant to the advertising

process
As stated, the AdsMLEnvelope provides a framework in which operational data is

carried as data content in Item elements. This operational data will be represented

using a variety of content formats that are 'wrapped' by the AdsMLEnvelope Item

layer for transmission between parties during the execution of advertising processes.

In addition to formats such as AdsMLBookings and AdsMLMaterials developed within

the AdsML effort, also earlier established industry formats for representing

operational data can be used such as:

• CREST. Developed by the Classified Advertising Standards Task Force of the

Newspaper Association of America (NAA, http://www.naa.org)), CREST 2.0 is

an XML-based media independent format for electronically exchanging and

sharing classified advertising data. CREST focuses on the three main areas of

classified advertising - real estate, transportation, and employment

categories, and provides a generic extension mechanism to record advertising

data that falls outside these categories.

• IfraAdConnexion. Developed by Ifra (http://www.ifra.com), IfraAdConnexion

is an XML-based vocabulary for the newspaper industry, the vocabulary

concentrating on the ad booking and ordering processes.

• IfraTrack. Developed by Ifra, IfraTrack is an XML-based specification for the

interchange of status and management information between local and global

production management systems in newspaper production.

• JDF. Developed by CIP4 (http://www.cip4.org/) the Job Definition Format

(JDF) is an XML-based job ticket format used to create end-to-end job tickets

for a print run. JDF facilitates information exchange and facilitates integration

and interoperability among workflow systems.

• SPACE/XML. Developed by IDEAlliance (http://www.idealliance.org), the XML-

based Specification for Publisher and Agency Communication Exchange

(SPACE/XML) is a standard for sending and acknowledging advertising space

reservations, insertion and change orders, invoicing, and advertising copy

data files between advertising agencies, prepress or prepress media services,

printers, and publishers.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 19 of 68

3 AdsMLEnvelope choreography
The message choreography between any two organizations that have implemented

AdsMLEnvelope occurs at two different levels: between their AdsMLEnvelope

Processors, and between their Item level applications.

The AdsMLEnvelope-level choreography is relatively simple, and is defined in the

AdsMLEnvelope specification and the Process Partnership Agreement. Each exchange

of AdsMLEnvelope messages begins when one AdsMLEnvelope processor sends an

AdsMLEnvelope to another AdsMLEnvelope processor, which is usually at a different

organization. Under certain defined circumstances, the second processor will send an

Response message back to the first one. In some cases, the first processor will re-

send an AdsMLEnvelope message for which no satisfactory response has been

received.

Although the AdsMLEnvelope-level choreography can get more complicated than this,

it is not particularly difficult. Its purpose is administrative and technical: it supports

the communication of the Items that are contained within the Envelopes.

3.1 Envelope Response Messages
AdsMLEnvelope includes provisions both for the packaging and routing of business

messages (Items) inside an AdsMLEnvelope message, and for the transmission of an

Response message from the recipient’s AdsMLEnvelope processor to the sender’s

AdsMLEnvelope processor. Common types of responses include:

• Acknowledgement that a given message was received and successfully

processed

• Notification that a message contained structural or syntactic errors such that

it could not be processed

• Notification that one or more of the Items within a message violated relevant

provisions of the Process Partnership Agreement between the sender and

recipient, for example, because the Item used a standard or format that the

recipient is not able to process.

The AdsMLEnvelope standard specifies a set of facilities and rules that determine

when a Response message is optional (may be sent) or mandatory (must be sent) by

the recipient. For example, a response must always be sent if the message failed

syntactic or structural validation, or if it contained Items that violated the rules in the

relevant PPA, or if the sender of the message specified in the message header that a

response is required.

3.1.1 Envelope addresses

For security reasons, the AdsMLEnvelope format does not include a “reply-to”

address: the only indication in an AdsMLEnvelope of who sent the message is the ID

of the sending organization. (This is intended to prevent third parties from “spoofing”

the system, by intercepting an AdsMLEnvelope message and altering its reply-to

address.) So in order to send Response messages to their correct addresses, the

AdsMLEnvelope processor must “look up” the organization’s ID in its system and

retrieve the address to which messages intended for that organization should be

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 20 of 68

sent. This addressing information is part of the Process Partnership Agreement

between the two organizations.

3.2 Envelope exchange paths
The AdsMLEnvelope supports two main categories of exchange paths that an Item

may take. For this discussion they will be called Direct and Indirect.

3.2.1 Direct exchanges
The direct exchange path has the AdsMLEnvelope Item moving directly to all

targeted recipients. There are no intermediate parties to the exchange process, with

the single possible exception of a store-and-forward action on one or both sides of

the process. (Note that the message is not opened or processed by the store-and-

forward intermediary. The entity performing a store-and-forward operation, if

present, functions solely as a message traffic manager.)

The following diagram illustrates direct transmission from buyer to seller.

Buyer Seller

The following diagram illustrates the transmission from buyer to seller with additional

transmissions from the buyer to S1 and S2. S1 and S2 are secondary partners to the

transaction.

Buyer Seller

S1

S2

The following diagram illustrates the transmission process using a store and forward

intermediary, for example, when one organization acts as the gateway for another in

the sending or receiving of advertising information. The intermediary is represented

by a circle to indicate that it is not involved in message processing.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 21 of 68

Seller

S1

S2

Buyer
Store /

Forward

3.2.2 Indirect exchanges

The indirect exchange path has the Item moving through one or more

intermediaries. These intermediaries may perform a simple aggregation process or

actually perform an action on the contents of the Item.

In the indirect exchange process, a transaction may follow a path with steps like:

buyer -> buyers parent -> buyers rep firm -> sellers rep firm -> sellers parent ->

seller. By example in the U.S. market: AllState Insurance -> Sears -> NSA -> NNN -

> Newhouse Newspaper -> Newark Star Ledger.

The following diagram illustrates the message path for the indirect process. Store-

and-forward can appear at any part of the process and steps can be skipped.

Buyer

Buyer's

Parent

Buyer's

Rep

Firm

Seller

Seller's

Parent

Seller's

Rep

Firm

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 22 of 68

This process exposes interesting issues of how to get from the buyer to the seller.

Each of the steps in the chain is well known but may not be known to the end points.

The buyer may think that the path is:

Buyer

Buyer's

Parent

Seller

And the seller may think the path is:

Buyer Seller

Seller's

Parent

The reality may be something else entirely.

AdsMLEnvelope provides a number of facilities that are intended to support each of

these exchange scenarios. A description of these facilities can be found in the

Processing / Addressing / Conformance documentation.

3.3 Repackaging
When an AdsMLEnvelope Item is sent through an intermediary several things may

happen:

• The intermediary may perform a straight store-and-forward on the entire

message containing the Item without processing any of its content

• The intermediary may explode the message into its constituent Items, and

then repackage those Items into other AdsMLEnvelope messages without

having processed any of the Items

• Or it may explode the message into its constituent Items, perform some kind

of processing on those Items, and then create new AdsMLEnvelope messages

in which those Items are sent on to their next destinations.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 23 of 68

4 Processing Model and Routing Scenarios
AdsML provides both a definition of an XML document type (the AdsMLEnvelope) and

a framework for packaging and routing the business information that is carried as

Items within AdsMLEnvelope messages. The format of an AdsMLEnvelope message is

designed to support very specific types of processing.

This section describes the processing model for which the AdsMLEnvelope format was

designed, and the routing scenarios that it is intended to support. It contains both

illustrative descriptions of the processing model and routing scenarios, and specific

examples of how the AdsMLEnvelope schema should be used when realizing those

scenarios.

Please note that neither the processing model nor the routing scenarios are

normative parts of the AdsMLEnvelope standard. They are included for illustrative

and exemplary purposes only. AdsMLEnvelope implementers are free to develop

systems that deviate from this processing model, provided that those systems, and

the messages they generate, conform to the requirements that are described in this

document.

4.1 Terms and concepts

The description of the AdsMLEnvelope Processing Model relies upon the following

terms and concepts:

Business Entity: An organization or a subset of an organization that sends and/or

receives AdsML messages.

Content Creator/Consumer: A software application that creates or consumes

information that needs to be sent as an Item within an AdsMLEnvelope. For example,

this could be a booking system, an accounting system, a graphics package, etc. A

Content Creator/Consumer will always play two roles:

Content Creating Application: The role played by a Content

Creator/Consumer when it creates information that needs to be sent to

another system as an Item within an AdsMLEnvelope.

Content Consuming Application: The role played by a Content

Creator/Consumer when it consumes the information that was sent to it from

another system as an Item within an AdsMLEnvelope.

Content: Advertising-related information created by a Content Creating Application.

This could be a media pack, an insertion order, a publication plan, an advertisement,

an invoice, etc.

Trading Partner Agreement (TPA): An agreement between two business entities

that covers the terms of their business.

Process Partnership Agreement (PPA): Those aspects of the trading partner

agreement between two business entities that are accessible to their AdsMLEnvelope

processors.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 24 of 68

Note: Although the concept of a PPA is central to AdsML, the PPA itself is not

formally defined in AdsML. The absence of a formal definition is not expected

to prevent users from implementing AdsML systems.

Trusted Sender: An external business entity from which a given entity is willing to

receive AdsML Envelopes.

AdsMLEnvelope Processor: A software application that is capable of creating,

sending, receiving and responding to AdsMLEnvelope messages. An AdsMLEnvelope

Processor can play several roles:

• Item Redirector: The role played by an AdsMLEnvelope Processor when it

reads the addressing information in an Item and, if appropriate, redirects the

Item to an intermediary destination.

• Envelope Packager: The role played by an AdsMLEnvelope Processor when

it assembles a set of Items or a Response into an AdsMLEnvelope and sends

that Envelope to its next recipient.

• Envelope Receiver: The role played by an AdsMLEnvelope Processor when it

receives an AdsMLEnvelope message that was sent to it by another

AdsMLEnvelope Processor.

• Item Content Unpacker: The role played by an AdsMLEnvelope Processor

when it converts the contents of an Item back into that Item’s original format

so that it can be processed by the appropriate Content Consuming

Application.

• Response Creator: The role played by an AdsMLEnvelope Processor when it

creates a Response to an AdsMLEnvelope message that it has received.

• Response Processor: The role played by an AdsMLEnvelope Processor when

it processes a Response that was sent to it by another AdsMLEnvelope

Processor.

Note: Nothing in this document is intended to constrain the technical design

or structure of the AdsMLEnvelope Processor, including, for example, whether

it consists of a single monolithic application or a set of loosely coupled

services each of which performs a different role. Similarly, it is possible that

an Item Redirector could be a separate software application, or a role played

by an Item Creator.

Item Creator: A software application that converts the content provided by a

Content Creating Application into an AdsMLEnvelope Item.

Note: Nothing in this document is intended to constrain the technical design

or structure of the Item Creator or an Item Content Unpacker. In particular, it

is possible that the Creator and Unpacker functionality for a particular kind of

information could be combined into a single “AdsMLEnvelope Adaptor” that

binds to an application that both creates and consumes that kind of

information. In this case the Adaptor would play two roles: Item Creator and

Item Content Unpacker.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 25 of 68

Originating Entity: The business entity that creates the content that becomes an

AdsMLEnvelope Item.

Sending or Sender Entity: The business entity that sends an AdsMLEnvelope.

Message. The Items contained within a given message may or may not have been

originated by the Sender of that Envelope.

Destination Entity: The business entity that is the intended consumer of the

content that was created by the Originating Entity.

Receiving or Recipient Entity: The business entity that receives an

AdsMLEnvelope message. The Items contained within a given message may or may

not be destined for that Recipient.

Redirection: An action performed by an Item Redirector when it intervenes in the

routing of an Item and sends it to a business entity other than the one that the

Content Generating Application specified as its Destination Entity.

Intermediate Entity: A business entity that is not the originally stated

“Destination” of an Item, to which that item is redirected. The intermediate entity

might merely “store and forward” the Item without processing its content, or might

provide a service that involves validating or acting upon that content.

4.2 AdsMLEnvelope architecture
This section describes an expected “typical” high-level architecture of an

AdsMLEnvelope installation. It is for illustrative purposes only.

4.2.1 Overview
The following high-level illustration serves as a good starting point for this

discussion:

Item

Creator

AdsMLEnvelope

Processor

Item

Creator

Item

Creator

Item

Consumer

AdsMLEnvelope

Processor

Item

Consumer

Item

Consumer

The above diagram shows that:

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 26 of 68

• Multiple Content Creating Applications generate content that can be

packaged by an AdsMLEnvelope Processor into an Envelope, which is then

sent to an AdsMLEnvelope Processor at a different business entity.

• The second AdsMLEnvelope Processor unpacks the Items from the Envelope

and routes them to multiple Content Consuming Applications.

Notes:

• The actual transport of the Envelope over a physical network is not within the

scope of AdsML. Rather, AdsML assumes a common infrastructure of

networks, protocols and security and will use this infrastructure for secure

transmission of business messages. The envelope processor talks to the

transport layer, which may send or receive the Envelope by any appropriate

method and following any appropriate communication model (e.g. “push” or

“pull” and their many variants).

• Each AdsMLEnvelope processor is assigned a persistent ID that is unique

within the context of the business entity that controls this processor. The

Processor ID is recorded in the header of all AdsMLEnvelope messages that

are created by that processor.

4.2.2 Content creation – single source
If we take a closer look at the process of extracting advertising content from the

application that created it and packaged it in an AdsMLEnvelope (shown on the left

side of the above diagram as a single flow from Item Creator to AdsMLEnvelope

Processor), we see that actually it contains several parts:

AdsMLEnvelope Processor

Item Creator

Content

Creating

Aplication

Item Redirector
Envelope

Packager

PPA

Original

advertising

information

Item

AdsML

Envelope

containing

the Item

The above diagram shows that:

• The Content Creating Application generates some content and provides it to

the Item Creator.

• The Item Creator converts the content into a valid Item by encoding and

optionally encrypting it, and fills in the Item-level metadata with values that it

extracts from the source content. In order to do so, it needs to be closely

associated with the Content Creating Application and have knowledge about

the internal structure of the source content (as indicated by the box that

surrounds them).

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 27 of 68

• The Item is then optionally processed by an Item Redirector, which uses rules

stored in the Process Partnership Agreement (PPA) between the current

Sender and the Item’s intended destination to determine whether the Item

should be redirected to an intermediary destination.

• The (possibly redirected) Item is processed by the Packager, which places it

inside an AdsMLEnvelope along with zero or more other Items that are going

to the same place. The Packager uses the addressing information from the

PPA to determine the transport mechanism and physical address to which the

Envelope should be sent.

• The AdsMLEnvelope is sent to its destination.

Notes:

• An Item Creator needs knowledge about a Content Creating Application’s

source content. Therefore, there is likely to be a separate Item Creator

associated with each type of Content Creating Application.

• The Content Creating Application can be expected to have an addressing

mechanism already in place, perhaps with an application-specific catalog

structure. Depending on the needs of the host organization, either the

AdsMLEnvelope Processor and PPA can reference the address catalog used by

the Content Creating Application, or the Item Creator must translate the

addresses generated by the Content Creating Application into the format used

by the AdsMLEnvelope Processor.

• Item-level metadata values filled by the Item Creator include the Item’s type,

format, priority and intended destination, as well as the type of encoding

and/or encryption that was applied to it.

• Redirection is never arbitrary: it occurs because of a business agreement

between the entity that is sending the Item and its intended Destination

entity.

• In order to perform its redirection and addressing functions, the

AdsMLEnvelope Processor must have access to all of the PPAs that its host

entity has entered into.

4.2.3 Content creation – multiple sources
Within a given organization, there may be multiple Content Creating Applications, in

which case the architecture would look more like this:

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 28 of 68

AdsMLEnvelope Processor

Content

Creating

Aplication

Item Redirector
Envelope

Packager

PPA

Content

Creating

Aplication

Item Creator

Item Creator

This diagram shows that:

• When there are multiple Content Creating Applications, each is associated

with a different Item Creator.

• The output of these Item Creators is a set of Items, which can all be sent to a

single Item Redirector for possible redirection, because redirection is a

generic process that requires only the metadata contained in the Item and the

rules contained in the relevant PPA as inputs to its operation.

• The Items are then sent onwards to the Packager, which assembles those

Items that are addressed to the same business entity into a single

AdsMLEnvelope and sends that envelope to its destination.

4.2.4 Content reception
The process of receiving, validating and unpacking incoming advertising information

looks like this:

AdsMLEnvelope Processor

PPA

Content

Consuming

Aplication

Content

Consuming

Aplication

Items

AdsML

Envelope

Envelope

Receiver

Item Content

Unpacker

This diagram shows that:

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 29 of 68

• An Envelope Receiver receives the incoming AdsMLEnvelope message.

• The Receiver validates the Envelope against the terms and conditions stored

in the relevant PPA, and (assuming that all is ok), extracts its component

Items and sends them to the Item Content Unpacker.

• The Item Content Unpacker converts the contents of the Items it receives into

a form that is functionally equivalent to the content that was originally

generated by the Content Creating Application at the start of the process. It

then passes this content to the Content Consuming Application with which it is

associated.

• The Content Consuming Application consumes (acts upon) the content.

Notes:

• Actions performed by the Receiver include verifying and validating that the

structure and metadata of the AdsMLEnvelope conform to the standard, and

generating any Responses that need to be sent to the sending business

entity.

• Actions performed by the Item Content Unpacker include extracting the

content from inside the Item, reversing any encoding or encryption that was

performed by the Item Creator, and routing the content to the Content

Consuming Application.

• This architecture assumes that all of the Item-level metadata associated with

an Item disappears when the Item is unpacked, so a single Item Content

Unpacker can service many different Content Consuming Applications.

However, it is possible to envision a different architecture in which there

would be multiple Item Content Unpackers, one for each type of Content

Consuming Application.

4.2.5 Two-way information flow
The above detailed diagrams illustrate a simplified one-way information flow. In fact,

as shown in the Overview diagram at the start of this section, all information flow

actually occurs in both directions. An AdsMLEnvelope Receiver may generate a

Response message that goes back to the originating AdsML system, and a Content

Consuming Application may generate content that must be routed to the originating

Content Creating Application.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 30 of 68

AdsMLEnvelope

Processor

AdsMLEnvelope

Processor

 Envelope

Receiver

Envelope

Packager
Content

Creating /

Consuming

Application

Content

Creating /

Consuming

Application

Envelope

Packager

 Envelope

Receiver

Items

AdsML

Envelopes

Organization

A

Organization

B

This diagram shows the round-trip information flow between two Content

Creating/Consuming Applications in two different organizations, except that for

purposes of clarity the Item-level packing and unpacking operations are not shown.

The diagram is meant to illustrate that:

• All information flow occurs in both directions

• The Content Creating Application also acts as a Content Consuming

Application

• An AdsMLEnvelope Processor will perform both Packaging and Receiving roles

Note:

• It is not required that a Content Creating Application must also be a Content

Consuming Application, or vice versa.

4.2.6 Role playing
If we “zoom in” on Organization A in the above diagram, we discover that in order to

create and process both Items and Responses as shown in the previous diagrams, an

AdsMLEnvelope Processor needs to play multiple roles, some of which were not

shown above. The six roles played by an AdsMLEnvelope Processor are:

• Envelope Packager

• Envelope Receiver

• Item Content Unpacker

• Item Redirector

• Response Creator

• Response Processor

This diagram provides an overview of all of these roles:

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 31 of 68

AdsMLEnvelope Processor

Envelope

Packager
Item Creator

Content

Creating /

Consuming

Application

Envelope

Receiver

Item Content

Unpacker

Item Redirector

Response

Creator

Response

Processor

(An equivalent illustration for Organization B would simply be a mirror image of the

diagram for Organization A.)

The following sections contain versions of the above diagram that illustrate these

roles and relationships in more detail. In each case, the objects under discussion are

shown in gray with solid outlines. All non-gray objects with dashed outlines should be

ignored.

4.2.6.1 Role playing – Item processing

This diagram shows that the Content Creating/Consuming Application is directly

associated with an Item Creator and also receives content from the Item Content

Unpacker:

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 32 of 68

AdsMLEnvelope Processor

Envelope

Packager
Item Creator

Content

Creating /

Consuming

Application

Envelope

Receiver

Item Content

Unpacker

Item Redirector

Response

Creator

Response

Processor

The main point of this diagram is that in order for a business entity to implement an

AdsMLEnvelope system, it needs two categories of software:

• Each Content Creating Application needs to be associated with an Item

Creator that is capable of dealing with outgoing information content.

• The business entity as a whole needs to have at least one AdsMLEnvelope

Processor that is capable of performing the Packaging/sending role, the

Receiving/validating role, and the Item Content Unpacking role. This will

usually be a single piece of software.

• If the entity wishes to implement address redirection, the architecture needs

to contain an Item Redirector. This may either be a fourth role played by the

AdsMLEnvelope Processor, as shown above, or a standalone application.

4.2.6.2 Role playing: Response generation

This version of the diagram emphasizes the roles that an AdsMLEnvelope Processor

plays when responding to an incoming AdsMLEnvelope that contains Items.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 33 of 68

AdsMLEvelope Processor

Envelope

Packager
Item Creator

Content

Creating /

Consuming

Application

Envelope

Receiver

Item Content

Unpacker

Item Redirector

Response

Creator

Response

Processor

• When the Envelope arrives, the Envelope Receiver verifies and validates the

integrity of the Envelope and the Items within it. If errors are discovered, or if

the governing Transmission/Response Mode requires sending a response to all

incoming messages, then the Envelope Receiver routes the necessary

information to the Response Creator.

• The Response Creator generates the appropriate Response content based on

information provided to it by the Envelope Receiver.

• The Response content is routed to the Envelope Packager for transmission

back to the organization that sent the incoming Envelope.

4.2.6.3 Role playing: Response processing

This version of the diagram emphasizes the roles that an AdsMLEnvelope Processor

plays when responding to an incoming AdsMLEnvelope that contains a Response.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 34 of 68

AdsMLEnvelope Processor

Envelope

Packager
Item Creator

Content

Creating /

Consuming

Application

Envelope

Receiver

Item Content

Unpacker

Item Redirector

Response

Creator

Response

Processor

• When the Envelope arrives, the Envelope Receiver identifies that it contains

Response content rather than Items.

• The Response is routed to an Response Processor for processing.

• The Response processor takes whatever action is necessary based on the

nature of the Response.

4.3 Source and nature of addressing

information

4.3.1 Where does it come from?
An AdsMLEnvelope Processor can only deliver advertising information (packaged as

Items within Envelopes) to the business entities identified by the Content Creating

Applications. Stated another way, “I can’t deliver it if you don’t tell me where to sent

it.”

The Content Creating Applications are the ultimate source of information related to

the document exchange. These applications know what companies they do business

with and all other parties that might be related to any transaction. The Content

Creating Applications are assumed to have correct information about business

partners at the transaction level (that is, the identity of a business entity to which

some advertising content should be sent) but not at the delivery level (e.g. the email

address of that business entity).

The PPA that is in place between two parties is the only source of physical addressing

information (i.e. transport mechanism and address) for the delivery of messages to

those parties. The information contained within (or accessible to) the PPA is always

the most current. Therefore, the Content Creating Application only provides the ID of

the business entity to which some content should be delivered. This then is

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 35 of 68

translated during AdsMLEnvelope processing into the physical address to which that

item is sent.

Every Content Creating Application must place delivery information in a recognizable

place within the content that it provides, so that the Item Creator that will convert

the content into an Item can find the information, or provide a custom mechanism by

which it communicates the information to the Item Creator.

4.3.2 Who does it go to?
Every Item in an Envelope has a primary destination. This is the business partner

that originated the exchange or is the target of an originating exchange. In EDI

terms, this is the primary trading partner.

In addition to the primary trading partner, there can be any number of secondary

partners that receive copies of the advertising information. In general, the secondary

partners have no response requirement at the application level. (AdsMLEnvelope

does not provide special handling for messages sent to secondary partners.)

For example, the following are potential trading partners as defined in the

SPACE/XML specification, any of which could act as either a primary or secondary

partner in a given message exchange:

AG Agent Agency

AO Account of Advertiser

AP Account of Origin Party

AQ Account of Destination Party

B3 Previous Name of Firm

BF Billed From

BN Beneficial Owner

BO Broker Sales Office

BT Bill to Party

BY Buying Party Purchaser Agency of Record

CF Subsidiary Division

CQ Corporate Office

CS Consolidator

DH Doing Business As

EM Party to Receive Electronic Memo of Invoice

PH Printer

PI Publisher

PM Party to Receive paper Memo of Invoice

PW Pick Up Address

SF Ship From

SH Shipper

SO Sold To If Different From Bill To

SR Samples to be Return To For proofs or tearsheets

SU Supplier, Manufacturer, Separator, Service Bureau

TS Party to Receive Certified Test Results

4.4 Item-level addressing metadata

4.4.1 Addressing metadata
One of AdsML’s primary purposes is to facilitate the routing of advertising

information – AdsML Items – between business entities. In order to accomplish this,

the following Address-related metadata is associated with each Item in an

AdsMLEnvelope:

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 36 of 68

• ITEM ID – the unique ID of this Item.

• DESTINATION – the business entity that is intended to consume this Item

• TO – the next business entity to which this Item will go. This is often the

same as the Destination entity, but can be changed by the Item Redirector in

order to redirect this Item to an intermediary entity.

• LAST PROCESSED BY – the last business entity that created, reviewed or

modified the contents of this Item.

• ACTIVITY HISTORY – records the history of an Item as a sequence of

Activities, each Activity consisting of three values: ACTION, PERFORMED

BY, and TIMESTAMP.

4.4.2 Maintenance of the Item History
The Item’s Activity History is a multi-valued stack that lists the Activities that have

affected this Item and the business entities that performed them. It is incremented

by each Item Creator that operates on the Item, or in the case of a Forwarding

operation, by the AdsMLEnvelope Processor that forwards the item. The first entry in

the stack always reflects the Item’s creation.

Each Activity in the history stack contains three values:

• ACTION: Allowable values are “Create”, “Review”, “Modify” or “Forward”

o Create: Item was created and a new globally unique ID was assigned

to it. (This is the only Action that creates a new Item ID. It is always

the first (oldest) entry in the Activity History stack.)

o Review: Item was passed to a content creating/consuming application

that reviewed or validated the contents of the item without changing

it, after which the item contents were repackaged in the same Item in

which they arrived.

o Modify: Item was passed to a content creating/consuming application

that modified the Item, after which it was repackaged in the same

Item in which it arrived.

o Forward: Item moved through a business entity without being

unpacked and passed to a content creating or consuming application.

• PERFORMED BY: The business entity that performed the action

• TIMESTAMP: The date/time on which the Item was received by an Item

Creator and repackaged, or, if in the case of a “Forward” action, the date/time

on which the Item was forwarded.

Each business entity that creates, reviews, modifies or forwards an Item must

increment that Item’s Activity History.

Comments are invited on the following issues:

A) The history stack assumes success, but what should happen in case of errors? For example: suppose
the business entity tries to forward an Item but fails. Should this action be logged in the Item History?
Should there be a status associated with each action?

B) In order to record “Review” and “Modify” actions the Item Creator will need a closer connection to the
Item Content Unpacker than is shown in the architecture, relatively complex internal functionality, and
probably some form of persistent storage. This raises the question of whether the ability to Review or
Modify the contents of an Item and then have them continue their journey in the same Item in which they

arrived is sufficiently valuable so as to justify the more complex architecture that will be required. Should
the Review and Modify actions be removed in order to make implementation simpler? Or as a compromise,
should logging of “Review” and “Modify” be made optional and associated with one of the higher
Conformance Levels?

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 37 of 68

4.4.2.1 When must the history stack be incremented?

A business entity that Forwards an Item to another destination without having

reviewed or modified its contents is required to treat the forwarding operation as a

continuation of the journey of the existing Item and increment its history stack

appropriately.

A business entity that Reviews or Modifies the contents of an Item may choose

whether to treat the next step in the Item’s journey as a continuation of its prior

journey (in which case the Item retains the same Item ID number and its history

stack is incremented appropriately), or as a new journey by a new Item (in which

case the Item Packager assigns a new Item ID and restarts its history stack by

indicating a “create” operation).

This flexibility is provided in order to accommodate situations in which it would be

difficult or inappropriate to recreate the original Item’s ID and history information

when transmitting it to its next destination. However, whenever a business entity

reviews or modifies the contents of an Item without substantially transforming those

contents into a new object, the preferred approach is for the entity to repackage and

transmit the contents in the same Item in which they originally arrived, rather than

creating a new Item.

4.4.3 Other metadata
The following other types of Item-level metadata are also used to control processing

of that Item. See the Specification Part 2 for a more detailed description of these

elements.

• Item Type

• Priority

• Format

• Encoding

• Encryption

4.4.4 ItemHeader vs. ContentHeader metadata
In most cases, each Item will contain a single unit of content that was created by the

Content Creating Application – for example, a booking, an insertion order, or some

advertising content. This content is stored in the ContentData element inside the

Item. However, AdsMLEnvelope permits a single Item to contain multiple

ContentData elements, provided that each of these separate content elements

within the Item consists of an alternative representation of the same business

information using a different format.

For example, a single Item could contain two versions of the same insertion order,

one using the IfraAdConnexion format and the other using the SPACE/XML format, or

two versions of the same advertising content, again using two different formats. This

duplication is permitted ONLY when the only difference between the business

information contained in the two content elements is the format that was used for

them. The recipient of an AdsML Item that contains multiple alternative content

elements is expected to process one and only one of the alternative representations,

and to discard the contents of all of the other ContentData elements without having

opened or examined them.

The ability to store multiple representations of the same Item within the Item

element is optional functionality that requires prior agreement between both the

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 38 of 68

Sender and Recipient of that Item. In order to enable it, the structure of every Item

allows for the possibility that it will contain multiple ContentData elements, each of

which has an associated ContentHeader element. The AdsML metadata contained

within an Item is allocated either to the Item’s Header (in which case that metadata

applies to all of the contents of the Item) or to a ContentHeader within the Item (in

which case that metadata applies only to the specific ContentData with which it is

associated). For example, the Item Type element is associated with the Item as a

whole, while a separate Item Format element is associated with each unit of content

contained inside that Item.

For purposes of clarity, the rest of this document ignores the distinction between

ItemHeader and ContentHeader metadata, and is written as if each Item contains a

single unit of content and all of the metadata attached to that Item applies to all of

the content within it.

4.5 Envelope-level addressing metadata

4.5.1 Transport mechanism and physical address
In order to avoid exposure of a business entity’s AdsMLEnvelope processor’s physical

address, an AdsMLEnvelope does not contain a copy of the physical address to which

it should be sent. It is up to the Envelope Packager to determine the transport

mechanism (e.g. http, ftp, email, digital delivery service, etc.) that should be used

when conveying an AdsMLEnvelope to a given recipient, and the specific address to

which the Envelope should be sent. This information is contained in the PPA between

the sender and the recipient. Acting on this information, the Envelope Packager

creates an appropriate physical package, and submits both it and the intended

address to an appropriate delivery system.

4.5.2 Contact information
The header of an AdsMLEnvelope contains a Contact element, which in turn can

contain one or more Address elements. These elements play no role in the

addressing or routing of the AdsMLEnvelope or the Items within it. Instead, they are

intended to provide human-readable contact information to the destination

organization in case an error occurs and the recipients wish to contact someone at

the sending organization in order to resolve the error.

4.6 Redirection capabilities and implications
AdsMLEnvelope provides capabilities to enable the redirection of an Item from the

Destination specified by its Content Creating Application, to an intermediary

destination specified in the PPA between the sender and the originally intended

recipient of the Item. These redirection capabilities are optional and are associated

with Level 2 conformance. This section discusses some of the associated issues.

The metadata provided in the AdsMLEnvelope layer (in the form of Item-level and

Header-level metadata within an AdsMLEnvelope) is meant to support a relatively

simple yet powerful set of capabilities, as described below. However, it must be

remembered that under normal circumstances this information is only available to

the AdsMLEnvelope Processor (and to human operators of processors in the form of

reports and logs), not to the content creating and consuming applications

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 39 of 68

themselves. Further, AdsMLEnvelope acts in service to the instructions (in the form

of a specified Destination) provided by the content creating application.

4.6.1 Redirection basics
• Addressing information is maintained, and addressing operations such as

redirection are performed, at the Item level. In terms of addressing, the

AdsMLEnvelope serves as a relatively simple container for a set of Items, each

of which carries its own addressing information

• Address redirection can only affect the next “hop” that an Item will take. In

other words, the Item Redirector can only affect the To element, and can only

specify a single To location.

• In terms of redirection, an Item Redirector has only two choices: send the

Item to its specified Destination, or redirect it to an alternate To location.

• It is an error to redirect an Item back to its sender.

o (If you do, the original sender may report a “duplicate Item ID” error

and refuse to process the Item.)

• Only a Content Creating Application can specify the Destination value. The

AdsMLEnvelope facilities act in service to this specified Destination. As a

consequence, an Item Creator will always set the To element equal to the

Destination element.

• A Content Creating Application can only specify a single Destination. No

mechanism is provided for a Content Creating Application to say that an Item

must go “here, then there, then to this third place.”

• Therefore, complex address chains in which an Item must pass through more

than one intermediary on its way to its Destination depend on each Item

Redirector in the chain having access to the appropriate information to send

the Item on its way. Local knowledge at each step determines the next step.

4.6.2 Redirection responsibilities and requirements
There are only two permitted reasons for an Item Redirector to intervene in the

routing of an Item:

• Agreement between the current business entity and the specified Destination

entity that Items of, for example, this Type and Format should be redirected

to a different entity

o Along with Type and Format, redirection agreements can be based on

any values contained in the Item’s AdsML-defined metadata, including

Item-level user-defined Properties. However, the redirection rules

must not be based on information that is only found inside the Item’s

ContentData element.

• Agreement between the current business entity and a third party acting on its

behalf that all outgoing Items should route through that third party, which will

provide a “store and forward” service on behalf of the sending entity.

A given Item Redirector can only implement one of these two rules on a given Item,

because no mechanism is provided for the Item Redirector to indicate that an Item

should go first to one location and then to another.

• Therefore, in a situation where an entity contracts with an agent acting on its

behalf to perform services of a “store and forward” nature, it is the

responsibility of the entity to ensure that its agent has a PPA in place with

each of the Destinations to which items might be sent via that agent, and can

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 40 of 68

perform any additional redirections that those Destination entities might

request.

The above discussion is about responsibilities and requirements that are

implemented by the Item Redirector. In addition, any Content Consuming Application

through which the Item passes can perform address interventions:

• Each time an Item is unpacked and its contents passed to a Content

Consuming Application, that application determines the next Destination of

that content, and whether its next journey will be considered a continuation of

the previous one, or a new journey starting at that business entity.

• Therefore, once an Item has been redirected, the AdsMLEnvelope facilities

cannot “guarantee” that it will reach the Destination that was specified by the

entity that originally created it, because any entity to which it is redirected

might intervene and change its stated Destination by converting it into a new

Item. This apparent weakness is considered by the AdsML Technical Working

Group to be, in fact, a strength, because it supports in a relatively simple and

straightforward way the complex twists and turns that occur in the real world.

When an Item is redirected through a third party, depending on the nature of the

business relationships between those three parties, the intermediary may not have a

formal business relationship with the original sender; this occurs, for example, when

the party to which the Item is redirected only has a business relationship with the

originally specified Destination, not with the Sender. In this case, it is the originally

Destined recipient’s responsibility to ensure that:

• The Intermediary it specifies has the necessary PPA information in place to

accept and act upon the Item

• The business entity ID values that are used by all the participants in this

scenario to identify each other will be understood by all of the systems

through which the information will pass.

4.7 Addressing scenarios
This section contains three usage scenarios that illustrate common uses of the

AdsMLEnvelope addressing and redirection functionality. While the scenarios

themselves are merely illustrative, the examples of how the element values should

be recorded in each situation reflect the requirements of the AdsMLEnvelope

standard. In other words, in a real world situation analogous to any of these

scenarios, an system is required to fill in the relevant addressing metadata with

values that follow the patterns shown here.

4.7.1 Scenario 1: Originator to Destination
The following scenario illustrates the simplest case, in which an entity creates some

content that is sent directly to a second entity where the content is consumed.

Therefore, in this scenario the Originating Entity is also the Sender, and the

Receiving Entity is also the Destination of the information contained in the message.

Note that this example describes only those actions performed by each software

component that are relevant to the addressing scenarios. Each component also has

other responsibilities that are described elsewhere in this document.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 41 of 68

4.7.1.1 Within the Originating Entity (“A”)

a) A Content Creating Application creates the content that will go into an Item,

and passes the content to the Item Creator that is associated with that

Content Creating Application (or with that type of content).

b) The Item Creator associated with that Content Creating Application encodes

and packages the content as an Item. The Item Creator fills in the Item’s

type, format, priority and encoding, and places the following values in the

Item’s address-related metadata elements:

a. ITEM ID: “1”

b. DESTINATION: “B”

c. TO: “B”

d. LAST PROCESSED BY: “A”

e. ACTIVITY HISTORY: Action = “Create”; Performed by “A”; Date/time

c) A’s Item Redirector examines this Item, compares its destination to the

address-related business rules stored in the local PPA, and determines that

the item does not need to be redirected to a different entity. Therefore, none

of the Item’s addressing information is changed.

d) A’s Envelope Packager assembles all the Items that are addressed TO “B” and

puts them in a single Envelope addressed to that business entity. Based on

information contained in the PPA, it routes the envelope by an appropriate

transport mechanism (e.g. http or ftp) to the address provided by “B”.

4.7.1.2 Within the Destination Entity (“B”)

a) B’s Envelope Receiver receives the Envelope from “A”, verifies that “A” is a

trusted sender, that the envelope’s structure conforms to the AdsMLEnvelope

Standard, and that the Envelope and Item-level metadata conform to the PPA

that is in place between “A” and “B”. Assuming that a response is required,

the Envelope Receiver generates the response content and makes it available

to B’s Envelope Packager. The Receiver then extracts the Items from the

envelope and makes them available to the Item Content Unpacker.

b) B’s Envelope Packager receives the response content, places it in an

AdsMLEnvelope, and sends that Envelope to A.

c) B’s Item Content Unpacker extracts the content from the Item, restores it to

its original form, and sends it to the appropriate Content Consuming

Application.

d) The Content Consuming Application receives the content and acts upon it.

4.7.2 Scenario 2a: Originator to Destination via an

Intermediary that does not change the content
The following scenario illustrates a slightly more complex case, in which a business

entity creates some content that is routed to its destination via an intermediary. The

intermediary then performs a “store and forward” service that does not involve

processing the Items that it handles, other than to aggregate them into a different

envelope and forward them to their destination. Familiarity with Scenario 1 is

assumed.

Note that this scenario could be extended through multiple intermediaries.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 42 of 68

4.7.2.1 Within the Originating Entity (“A”)

a) A Content Creating Application creates the content and passes it to the

appropriate Item Creator.

b) The Item Creator packages the content as an Item. The Item Creator fills in

the Item’s type (“XX”), format (“YY”), priority and encoding, and places the

following values in the Item’s address-related metadata elements:

a. ITEM ID: “1”

b. DESTINATION: “B”

c. TO: “B”

d. LAST PROCESSED BY: “A”

e. ACTIVITY HISTORY: Action = “Create”; Performed by “A”; Date/time

c) A’s Item Redirector examines this Item and compares its destination to the

address-related business rules stored in the local PPA. The Addressor finds a

rule that Items intended for entity B of type “XX” and format “YY” should be

redirected to entity C instead. Therefore, the addressor changes the TO

element, leaving the rest of the address information unchanged.

a. ITEM ID: “1”

b. DESTINATION: “B”

c. TO: “C”

d. LAST PROCESSED BY: “A”

e. ACTIVITY HISTORY: Action = “Create”; Performed by “A”; Date/time

d) A’s Envelope Packager assembles all the Items that are addressed TO “C” and

puts them in a single Envelope addressed to that entity. Based on information

contained in the PPA, it routes the envelope by an appropriate transport

mechanism (e.g. http or ftp) to the address provided by “C”.

4.7.2.2 Within the Intermediate Entity (“C”)

a) C’s Envelope Receiver receives the Envelope from “A”, verifies that “A” is a

trusted sender, that the envelope’s structure conforms to the AdsMLEnvelope

Standard, and that the Envelope and Item-level metadata conform to the PPA

that is in place between “A” and “C”. The Receiver extracts the Item from the

envelope and routes it to C’s Item Redirector. Note that in this scenario,

because C is performing a “store and forward” service, the items are not

Unpacked and are routed directly to an Item Redirector with no intermediate

processing. For simplicity, we assume that no response message is required

from C to A.

b) C’s Item Redirector examines the Item and compares its destination to the

address-related business rules stored in the PPA between C and the Item’s

stated Destination, B. In this case no further redirection is required. However,

C must still change the Item-level addressing metadata to reflect the fact that

it is passing through C’s control, and it must increment the history

information:

a. ITEM ID: “1”

b. DESTINATION: “B”

c. TO: “B”

d. LAST PROCESSED BY: “A”

e. ACTIVITY HISTORY:

i. Action=”Forward”; Performed by “C”; Date/Time

ii. Action = “Create”; Performed by “A”; Date/time

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 43 of 68

c) C’s Envelope Packager assembles all the Items that are addressed TO “B”,

puts them in a single Envelope addressed to “B” and routes it to the address

provided by “B”.

4.7.2.3 Within the Destination Entity (“B”)

a) B’s Envelope Receiver receives the Envelope from “C”, verifies that “C” is a

trusted sender, that the envelope’s structure conforms to the AdsMLEnvelope

Standard, and that the Envelope and Item-level metadata conform to the PPA

between that is in place between “C” and “B”. Assuming that a response is

required, the Envelope Receiver generates the response content and makes it

available to C’s Envelope Packager. The Receiver then extracts the Items from

the envelope and makes them available to the Item Content Unpacker.

b) B’s Envelope Packager receives the response content, places it in an

AdsMLEnvelope, and sends that Envelope to C.

c) B’s Item Content Unpacker extracts the content from the Item, restores it to

its original form, and sends it to the appropriate Content Consuming

Application.

d) The Content Consuming Application receives the content and acts upon it.

4.7.3 Scenario 2b: Originator to Destination via an

Intermediary that touches the content
The following scenario illustrates what happens if the intermediary, C, reviews or

modifies the content. Note that two options are provided: at its discretion, C may

elect either to create a new Item or to continue the journey (and increment the

history) of the Item that contained the content it received.

4.7.3.1 Within the Originating Entity (“A”)

This section is the same as in scenario 2a.

4.7.3.2 Within the Intermediate Entity (“C”)

a) C’s Envelope Receiver receives the Envelope from “A”, verifies that “A” is a

trusted sender, that the envelope’s structure conforms to the AdsMLEnvelope

Standard, and that the Envelope and Item-level metadata conform to the PPA

that is in place between “A” and “C”. The Receiver extracts the Item from the

envelope and routes it to C’s Item Content Unpacker. For simplicity, we

assume that no response message is required from C to A.

b) C’s Item Content Unpacker extracts the content from the Item, restores it to

its original form, and sends it to the appropriate Content Consuming

Application.

c) C’s Content Consuming Application receives the content and acts upon it.

Since C is an intermediary acting on behalf of B, let us assume that C’s

application validates that the content conforms to B’s technical requirements,

and if necessary changes the content so that it conforms to B’s requirements.

Having done so, C’s Content Consuming Application passes the validated

content to the appropriate Item Creator.

d) C’s Item Creator re-encodes the content and packages it as an Item. C can

now choose whether to treat this as a new Item or as a continuation of the

original Item. The options are:

a. C TREATS THIS AS A NEW ITEM AND STARTS A NEW HISTORY STACK:

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 44 of 68

i. ITEM ID: “2”

ii. DESTINATION: “B”

iii. TO: “B”

iv. LAST PROCESSED BY: “C”

v. ACTIVITY HISTORY: Action = “Create”; Performed by “C”;

Date/time

b. C TREATS THIS AS AN EXISTING ITEM AND INCREMENTS THE

HISTORY STACK:

iii. ITEM ID: “1”

iv. DESTINATION: “B”

v. TO: “B”

vi. LAST PROCESSED BY: “C”

vii. ACTIVITY HISTORY:

1. Action=”Review”; Performed by “C”; Date/Time

2. Action = “Create”; Performed by “A”; Date/time

e) Assuming that no further redirection is required, C’s AdsML Envelope

Packager assembles all the Items that are addressed TO “B”, puts them in a

single Envelope addressed to “B” and routes it to the address provided by “B”.

4.7.3.3 Within the Destination Entity (“B”)

This section is the same as in scenario 2a.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 45 of 68

5 Process Partnership Agreement
The Process Partnership Agreement, or PPA, contains all of the information that must

be available to an AdsMLEnvelope Processor in order to communicate properly with

each of its communication “partners”, where each “partner” is a business entity with

which it can exchange AdsMLEnvelope messages. This section describes the

relationship between the PPA, TPA and an AdsMLEnvelope Processor, see also the

AdsML E-Commerce Usage Rules and Guidelines for a general discussion.

5.1 Access to rules and “AdsMLEnvelope

metadata”
The “choices” made by an Item Redirector, Envelope Packager or Envelope Receiver

and Item Content Unpacker when creating or receiving and validating an

AdsMLEnvelope or when redirecting an Item MUST be based on the combination of

the rule set contained in the relevant PPA, plus the AdsMLEnvelope metadata that is

available to the AdsMLEnvelope Processor (where by “metadata” we mean the

AdsML-defined elements and attributes of the Item(s) or Envelope in question,

including any user-extended Properties within the Item(s) or Envelope.) This

metadata is the only information in the message or its contents that can be assumed

to be visible to the AdsMLEnvelope Processor. Therefore, the processing choices

made during these operations MUST NOT be based on information that is only found

inside the ContentData element of an AdsML Item.

Note that the Item Packager is assumed to be closely bound to the content format

used in that Item, and is exempt from this rule.

5.2 Relationship to a Trading Partner

Agreement
Two business entities will only have one Trading Partner Agreeement (TPA) between

them. The TPA represents, in its entirety, the business relationship between the two

entities (where an entity may be an entire organization or a part of an organization).

Part of this information is recorded in the PPA, which is that part of the TPA that

describes how to use AdsML facilities to do ebusiness between the two partners. The

PPA will be used by the AdsMLEnvelope Processor parts (Item Redirector, Envelope

Packager and Envelope Receiver) in combination with the AdsMLEnvelope metadata

(both Envelope and Item level) to do appropriate processing.

5.3 Intermediary and on-behalf-of business

partners
As the word “Partnership” implies, it is assumed that in most cases any two business

entities that are willing to exchange AdsMLEnvelope messages with each other will

have some form of business relationship, and will “partner” in the exchange of

messages. However, this does not mean that they must have a traditional business

relationship in which one of them pays the other for its services.

A further discussion of this issue can be found in Appendix B.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 46 of 68

5.4 PPA Format and Contents
AdsML does not specify the physical format of a PPA or the full set of its possible

contents. Two partners who are establishing AdsML communications with each other

are free to implement rule-based processing based on any of the AdsML-defined

metadata, provided that each of their AdsML software systems are capable of

accessing and acting upon the processing rules that they have agreed between them.

Note that a user-extended AdsML schema is considered a part of the PPA, because it

defines, in machine-readable form, the message content that an AdsML

implementation expects to receive.

The list below is illustrative. The optional functionality and types of validation that

two communications partners have agreed to implement will define the need for any

given type of information in their respective PPAs. Depending on the ambitions of an

implementer and the conformance Level that has been implemented in the systems

in question, the list could be longer or shorter than that shown here.

For a given communications partner with which an AdsMLEnvelope Processor

communicates, a minimal PPA can include:

• Self identification

o The business entity ID (combination of ID string and Type attribute)

that will be used to identify “myself”, for example in the Sender

element of the Envelope header.

• Partner identification

o The business entity ID string and ID Type that will be used to identify

this particular partner, for example in the To and Destination

elements of an Item header.

• Addressing information:

o Transport mechanism (e.g. HTTP, FTP, email, or a delivery service)

o Address to which to send the message

o (Note that this information is not recorded inside the Envelope itself)

• Transmission/Response functionality (“send and forget” or “store and resend

until acknowledged” model)

o “Send and forget” is the default

o “Store and resend” must be agreed by both parties in order for that

functionality to take effect

o Note that this is a bilateral option that must be the same in both

directions

• The version(s) of the AdsMLEnvelope standard that may be used when

communicating with each other.

Depending on the operations that an AdsMLEnvelope system is required to perform,

a PPA might include additional information such as:

• Lists of allowed Controlled Vocabulary values

o For each type of Controlled Vocabulary in an AdsMLEnvelope whose

contents can be restricted or extended by an AdsMLEnvelope User, the

PPA (including, if present, the user-extended schema) must specify the

permitted values that can included in an Item or Envelope sent-to or

received-from this trading partner..Some of the controlled vocabularies

that might normally appear in a PPA include:

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 47 of 68

� Item types

� Formats/Standards

� Encoding types

� Encryption types

• Authentication credentials

o Whether a digital signature is required for the AdsMLEnvelope

o The circumstances (such as specific Item Types) under which a digital

signature is required for each Item within an Envelope

• Redirection

o The values or combinations of values of the AdsMLEnvelope metadata

in an Item that is Destined for this partner that should trigger a

redirection of that Item to a third party.

• Whether multiple XML representations of the same content are accepted

o Note that multiple representations must be agreed by both parties in

order to take effect

• Priority handling

o Whether higher priority items should receive special handling

o If so, any priority value thresholds that should trigger specific types of

handling (e.g. “priorities of 7 and higher should bypass the holding

queue and be handled immediately”)

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 48 of 68

6 Response choreography
This section discusses the AdsMLEnvelope message choreography (the send and

response patterns) that must occur once an AdsMLEnvelope Processor sends a

message to another AdsMLEnvelope Processor. Some of this functionality is defined

in one of two “Transmission/Response modes”, shown immediately below. The

remainder of the response choreography is independent of the selected

Transmission/Response mode, but is triggered instead by the Status of the Envelope

and its responseRequired attribute.

6.1 Transmission/response modes
AdsMLEnvelope supports two modes of transmission/response functionality: “Send

and forget” and “Store and resend until acknowledged”. Only these two modes are

available. Any given pair of communications partners MUST agree to use one of these

modes when communicating with each other and MUST NOT reduce or ignore any of

the required functionality of that mode.

“Send and forget” is the mandatory functionality that all AdsMLEnvelope

processors must support. It defines the default choreography that two business

entities must follow when transmitting and responding to AdsMLEnvelope messages,

in the absence of a specific agreement to the contrary.

“Store and resend until acknowledged” is optional functionality that is

associated with AdsMLEnvelope Level 1 conformance. It defines a more robust

choreography that two business entities may follow when communicating with each

other, provided that both of their processors support AdsMLEnvelope Level 1, and

that they have both agreed to use the “Store and resend until acknowledged” mode

when exchanging messages with each other.

6.1.1 “Send and forget”
“Send and forget” is the minimum default functionality that all AdsMLEnvelope

processors must support. The following list describes the “Send and forget”

functionality.

• A system is not required to retain a copy of the AdsMLEnvelope messages

that it has sent or any audit trail information about them

• A system never automatically resends an AdsMLEnvelope and never

increments the sendCount attribute.

• A system MUST generate a Response to an Envelope that it has received when

any one (or more) of the following conditions is true:

a. The Envelope’s Status is “Production” and validation or verification of

the Envelope’s structure and contents identifies one or more

Catastrophic or Item-level errors.

� Note that this condition applies regardless of whether the

Envelope contains Item or Response content.

b. The Envelope’s Status is “EnvelopeTest”

c. The Envelope contains Item content and it’s responseRequired

attribute is ‘true’

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 49 of 68

• If none of the above conditions is true, a system SHOULD NOT generate a

response to an Envelope containing Item content, and MUST NOT generate a

response to an Envelope containing Response content.

• Any such Envelope Response message (whether “message OK”, an Envelope-

level Catastrophic error, or an Item-level verification error) MUST contain

within itself a copy of the entire Envelope to which it is a response, including

all of the Item content that was contained within that Envelope

• A system is not required to identify duplicate Envelopes or Items that it has

received, though it may do so if it wishes.

• The recipient of an AdsMLEnvelope is permitted to ignore its send count and

to pass all valid and verified Items in the Envelope to the appropriate Content

Consuming Application even if the Envelope’s send count is greater than zero,

or if an apparently duplicate Envelope has previously been received. It is

therefore up to the Content Consuming Application to detect any duplicate

Item content that may have been sent to it.

Note that this model discourages the use of responses except when reporting an

error or during system setup. This is because in this model, even routine “message

OK” responses contain copies of the original message content, and therefore double

the amount of bandwidth consumed by AdsMLEnvelope communications. However,

the model does not actually prevent the sending of “message OK” responses if a user

wishes to do so.

6.1.2 “Store and resend until acknowledged”
“Store and resend until acknowledged” describes optional functionality that requires

an agreement between both sender and recipient in order to take effect. The “Store

and resend until acknowledged” model is preferred over the “Send and forget” model

and should be followed if possible. However, an AdsMLEnvelope implementation MUST

only follow the “Store and resend until acknowledged” model when communicating

with a trading partner that has explicitly agreed to follow this model. Therefore, a

given AdsMLEnvelope implementation that is capable of supporting “Store and

resend until acknowledged” will only be able to use this functionality when

communicating with a subset of its trading partners, and will have to follow the

“Send and forget” model with the rest of its trading partners.

The concept of “resending” applies to the entire AdsMLEnvelope, so that in every

possible way a re-sent Envelope is a duplicate of its original, except for the

incremented Send Count and the date/time of the retransmission. It is assumed (and

required) that the Items within the Envelope, including their metadata, do not

change when re-sent. For example, the system does not increment the Action

History of the Items in a re-sent Envelope.

The following list describes the “Store and resend until acknowledged” functionality.

• When a system sends an AdsMLEnvelope containing Item content whose

Envelope status is “production”, it MUST retain a copy of that Envelope at least

until it has received a Response indicating that the Envelope was successfully

received, validated and verified by its intended recipient. If no response is

received within an appropriate amount of time, the system MUST re-send

another copy of the Envelope.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 50 of 68

o This requirement does not apply to Envelopes that contain Response

content. An Envelope that contains a Response to another Envelope is

assumed to have been received correctly and MUST NOT be re-sent.

• This resending cycle continues until either a Response to the Envelope has

been received, or until an unacceptable amount of time (or number of

resends) has passed without receiving a response. At that point the sender’s

system signals an error in order to trigger manual follow-up and resolution of

the communications problem.

o The amount of time or number of resends that must pass before an

error is raised is at the sender’s discretion, but the sender’s system

MUST implement such a limit and, when the limit has been reached,

MUST raise an error to its operators that provides sufficient information

so that they can attempt to rectify the error and then re-send the

contents of the Envelope.

• Each time a system re-sends an Envelope, it increments the Envelope’s

sendCount attribute.

• A system that receives an AdsMLEnvelope whose envelope status is

“Production” MUST generate a response to that Envelope, except that if the

incoming Envelope does not contain any Item content (i.e. it contains only a

Response) then the system MUST only generate a response to the Envelope if

it contains an error that requires a response.

• In this mode the responseRequired attribute is ignored.

• The Response to an Envelope or Item SHOULD contain a reference to the ID of

the Envelope or Item to which it is a response rather than a copy of that

entire Envelope or Item.

• A system MUST retain sufficient information about the Envelopes that it has

received for a reasonable period of time so that it can verify, when receiving

an AdsMLEnvelope, that it has not previously received another Envelope with

the same globally unique Envelope ID, and if it has, whether that Envelope

came from the same sender. The following rules SHOULD then be applied,

depending on whether the second Envelope is from the same Sender as the

first one, and whether it has the same or a different Send Count:

 Same send count Different send count

Same

sender

Error: Report error to sender,

discard Envelope

Not an error: Discard

envelope, do not report an

error

Different

sender

Error: Report error to Sender,

route Envelope to manual

processing

Error: Report error to Sender,

route Envelope to manual

processing

Unlike the “Send and forget” model, “Store and resend until acknowledged” requires

that a response be provided for every incoming Envelope that contains Item content.

This is because the model specifies that in the absence of such a response the sender

will resend their Envelope. In order to avoid unnecessary message re-transmissions,

the sending of “message OK” responses is a core feature of this model.

6.2 Production and Test modes
The AdsMLEnvelope Transmission/Response modes described above define the

circumstances under which an AdsMLEnvelope Processor may or may not respond to

an Envelope whose status is “Production”. This section describes the relationship

between the three possible Envelope Status values (“Production”, “EnvelopeTest” and

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 51 of 68

“ResponseToEnvelopeTest”), the permissible contents of the AdsMLEnvelope, and the

response choreography that must be followed.

If the Envelope’s status is “Production” then:

• The Envelope MUST contain at least 1 Item or exactly 1 Response; it MUST NOT

be empty, it MUST NOT contain a mixture of Items and Responses, and it MUST

NOT contain more than one Response

• The rules in the applicable Transmission/Response mode determine whether a

Response must be generated

• The receiving AdsMLEnvelope Processor is expected to act upon all valid and

verified Items contained within the Envelope.

• If the Envelope contains only a Response, then its responseRequired attribute

SHOULD be set to ’false’.

If the Envelope’s status is “EnvelopeTest” then:

• The Envelope MUST contain at least one dummy Item or exactly one dummy

Response; it cannot be empty.

• The receiving AdsMLEnvelope Processor MUST discard any Items contained

within the Envelope without acting upon them or routing them to Content

Consuming Applications.

• The receiving AdsMLEnvelope Processor MUST generate a response message

whose Envelope status is “ResponseToEnvelopeTest”

• The response MUST contain the same results that a validation/verification of

an incoming “Production” Envelope would have generated: either an indication

that the message was “OK”, or any appropriate validation or verification

errors

If the Envelope’s status is “ResponseToEnvelopeTest” then:

• The Envelope MUST contain exactly one Response and no Item content

• The receiving AdsMLEnvelope Processor MUST NOT generate a response to it.

6.2.1 Test Items
The AdsMLEnvelope Processor provides facilities, as described above, to support the

setup and testing of Envelope transmissions between two systems. AdsML does not

provide facilities for using the AdsMLEnvelope Processor to support the testing of the

contents of Items that are transported within AdsMLEnvelope messages.

It is assumed that when users are implementing communications between a Content

Creating Application and a Content Consuming Application, they will perform any

required testing based on information that is contained in the content created and

consumed by those applications. This content-level information is “invisible” to the

AdsMLEnvelope Processor. As a result, AdsMLEnvelope Processors will not be able to

distinguish between “test” Items and “production” Items, and will treat them all in

the same fashion.

Individual Item-level standards, however, do define metadata within their message

formats to support the identification and special handling of test Items. This

metadata is meant to be acted upon by the Content Creating and Content Consuming

Applications which generate and consume those messages, not by the

AdsMLEnvelope Processor which operates at the Envelope level.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 52 of 68

6.3 Responses

6.3.1 Response addressee
The Response to an AdsMLEnvelope, including notification of verification errors

relating to any Items within that Envelope, is sent to the business entity that was

specified in the incoming Envelope’s header as its Sender.

6.3.2 Response priority
The priority of a response MUST be no lower than the priority of the Envelope to

which it is a response.

6.3.3 Upstream error notification
If an Item inside an Envelope generates a verification error, notification of that error

SHOULD be sent to (and only to) the Sender of the Envelope, which may not be the

same as the entity that last processed the Item in question (and presumably caused

the error). It is not the responsibility of the entity that performed the validation to

notify any additional “upstream” business entities that may have handled the Item.

For purposes of error notification, a business entity that sends an Envelope is

assumed either to have “touched” all of the Items in the Envelope (in which case it

assumes responsibility for repackaging them correctly before re-transmitting them to

their next destination), or if performing a “store and forward” operation, to have a

sufficient business relationship with the entity that last processed each Item so that

it can inform that entity of any errors concerning that Item.

6.3.4 Response to Responses
An AdsMLEnvelope Processor MUST NOT respond to a Response message unless it

causes verification or validation errors.

6.3.5 The responseRequired Attribute
The responseRequired attribute only affects processing when the status of the

Envelope is “Production”, it contains Item content rather than a Response, and the

Transmission/Response mode is “Send and forget”. In this situation, setting

responseRequired to “true” MUST override the recipient’s default behavior and cause

the recipient to send a response even if the Envelope did not generate any validation

or verification errors. In all other situations, this attribute is ignored.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 53 of 68

7 Error handling

An Envelope Receiver is required to validate incoming messages and identify certain

kinds of structural and content errors. Depending on the nature of the errors it

encounters, the Envelope Receiver must be able to respond in two ways:

1. If the error is of a type for which AdsMLEnvelope defines response handling

(see below), and if the sender of the message can be identified, the

AdsMLEnvelope processor MUST send an envelope to the Sender containing a

Response that informs the Sender of the error(s)

2. In all cases the AdsMLEnvelope processor SHOULD report the errors, including

those for which AdsMLEnvelope has not defined specific response handling,

internally to a person or system that is the designated recipient of non-

standard errors, so that the person or system can attempt to resolve the

error.

Four types of error situations, and their associated handling, are summarized in the

following table and defined more fully below. Further information about the error

reporting mechanisms is provided in the AdsMLEnvelope Specification Part 2 -

Schema.

Error

Category

Is validation

mandatory?

Triggering Conditions Response if error

Non-

acceptance

Yes - MUST • Unknown sender

• Sender’s credentials fail

authentication

• Not a trusted sender

• Not well-formed XML

• Discard envelope

without

processing

• Optionally notify

sender

Catastrophic

error

Yes – MUST • Not valid according to

the definitions

embodied in the un-

extended AdsML

Schema

• Not valid according to

PPA-defined Envelope-

level requirements

• Discard envelope

without

processing

• Notify sender

Catastrophic

error

No – depends

on PPA and

conformance

level

• Not valid according to

user-extended AdsML

Schema at the Header

level

• Discard Envelope

without

processing

• Notify sender

Item error No - SHOULD • Not valid according to

PPA-defined Item-level

requirements

• Not valid according to

user-extended AdsML

Schema at the Item

level

• Discard the Item

or route it for

manual error

handling

• Notify sender

• Attempt to

process all other

Items

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 54 of 68

7.1 Non-acceptance

7.1.1 Error definition
An AdsMLEnvelope is considered to be un-acceptable (in the literal sense of the

word) when either of the following is true:

• The recipient system cannot open the Envelope because some or all of it is

not well-formed XML

• An evaluation of the Sender’s business entity ID(s) and ID Type(s) (and

digital signature, if required) in the Envelope’s header shows that the

Envelope comes from an unknown business entity or from an entity that is

known to the recipient but not a “trusted sender” of AdsMLEnvelope

messages.

• An evaluation of the Sender’s ID provided by the underlying communications

system shows that the Envelope comes from an unknown or not trusted

business entity.

7.1.2 Error handling
If the Sender is unknown to the recipient, the AdsMLEnvelope Processor MUST discard

the Envelope without processing its contents or replying to its Sender.

If the Sender is known to the recipient but not a trusted sender, the recipient MUST

either discard the Envelope as above, or treat it as a Catastrophic Error (as defined

below). In both cases, its contents are discarded without further processing.

7.2 Catastrophic errors

7.2.1 Error definitions
A Catastrophic Error is a condition in which the entire Envelope is considered to be in

error, and therefore, none of its Item or Response content can safely be processed. A

Catastrophic Error occurs when any of the following are true:

• The Envelope does not have a globally unique ID

o Note that only AdsMLEnvelope Processors that retain appropriate

information about previously-received Envelope IDs can perform this

validation.

• The structure or contents of the Envelope do not conform to the version(s) of

the un-extended AdsMLEnvelope Schema that the recipient is able to process.

o For example:

� The recipient supports AdsMLEnvelope 1.0 but the message is

in a 2.0 format.

� The message is missing mandatory information

o Note: by “un-extended” we mean the AdsMLEnvelope Schema without

any user-defined extensions or restrictions.

• The Envelope contains non-agreed controlled vocabulary values in its Header.

o For example, the sender and recipient have agreed to use certain user-

defined Properties in their Envelopes, but the Envelope either does not

contain a required Property value or contains a value that has not been

agreed.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 55 of 68

o Note that this error only applies to header-level metadata, and does

not apply to controlled vocabulary values in any of the Items within

the envelope.

• The Envelope contains Response content that generates a verification or

validation error of any kind

o For example, the Response is structurally incorrect, is missing

mandatory content, or contains non-agreed controlled vocabulary

values as defined in the governing schema (whether or not that

schema has been extended by the trading partners).

7.2.2 Error handling
When a Catastrophic Error occurs, the recipient Processor MUST report a

“catastrophic” error and discard all of the contents of the Envelope without further

processing. Depending on the Transmission/Response mode that is in effect, the

error report either references or includes the contents of the entire Envelope that

triggered the error.

Note that the recipient is not required to validate the Envelope using the supplied

AdsMLEnvelope Schema and extension mechanisms. However, the recipient is

required to validate the incoming Envelope by a mechanism that achieves the same

results.

7.3 Item errors

7.3.1 Error definitions
An Item within an Envelope (but not necessarily anything else in the Envelope) is

considered to be in error when the Envelope’s metadata about that Item indicates

that any of the following are true:

• The Item has the same globally unique ID as another Item that has previously

been received in a different AdsMLEnvelope message.

o Note that only AdsMLEnvelope Processors that retain persistent

information can perform this validation.

• The Item contains non-agreed AdsMLEnvelope controlled vocabulary values

(for example, it is of a Type, Format, Encoding or Encryption that the

recipient has not agreed to accept from this Sender)

o Note that this applies both to AdsML-defined controlled vocabulary

values, and to optional user-defined controlled vocabulary extensions

• The Item’s metadata lacks one or more values that have been specified as

required values in the PPA between the Envelope’s Sender and Recipient.

o For example, if a digital signature is required for each Item, its

absence is considered an Item-level error.

7.3.2 Error handling
When an Item is in error the AdsMLEnvelope Processor Reports the error to the

Sender and tries to resume processing of any other Items in the Envelope. All non-

error Items should be processed if possible.

An error report in response to one or more Item-level errors in an Envelope lists the

Items that were successfully routed to their respective Content Consuming

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 56 of 68

Applications. The absence of an Item from this list tells the Sender that its recipient

did not process the Item in question.

As with catastrophic errors, the Envelope Response to an Item-level error either

references or includes the contents of the entire Envelope that triggered the error.

There is no mechanism in this situation to reference or include the contents of just

the offending Item.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 57 of 68

8 Priority handling

8.1 Overview
Each AdsMLEnvelope can be assigned an overall “priority” value. In addition, each

Item or Response element inside an Envelope can be assigned its own priority.

The intention of the priority mechanism is to allow the sender of an Envelope,

Response or Item to signal its relative priority compared to other Envelopes, Items

or Responses that may also require processing.

8.2 Operational requirements

8.2.1 Processing
Priority handling is associated with AdsMLEnvelope Level 2 conformance. An

AdsMLEnvelope Level 2 system MUST be capable of applying special handling to

higher-priority Envelopes, Items and Responses in the following situations:

• When prioritizing the selection, packaging and transmittal of outgoing Items,

Responses and Envelopes

• When prioritizing the validation, unpacking and internal distribution of

incoming Items, Responses and Envelopes

However, AdsMLEnvelope does not define the processing that should be associated

with specific priority values. It is up to individual business entities and their

communications partners to determine what, if any, special handling should be

applied to higher priority items.

8.2.2 Values
Besides the restraints imposed by their formal schema definition, the following

constraints apply to priority values:

• The priority assigned to an Envelope MUST be no lower than the highest

priority assigned to any of the Items or Responses in an Envelope

• The priority of a Response to an Envelope MUST be the same as the priority of

the Envelope to which it is a Response

• The priority of a Response to an Item MUST be the same as the priority of the

Item to which it is a Response

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 58 of 68

9 Responsibilities of AdsMLEnvelope

Processors
This section lists the primary responsibilities of an AdsMLEnvelope Processor in each

of the roles that it can play. This is meant to summarize and supplement the more

detailed descriptions of these responsibilities that appear throughout this document.

9.1 Responsibilities of an Item Creator

9.1.1 Encoding
The overall objective for the Item Creator is to prepare the content to be transferred

so that it can be correctly packaged in the AdsMLEnvelope, routed by the

AdsMLEnvelope Processor and unpacked by the destination system.

Being an XML document, the AdsMLEnvelope requires all content to be transported

within it to be well-formed according to the W3C's Recommendation Extensible

Markup Language (XML) 1.0 (Second Edition) (http://w3.org). This includes ensuring

that no characters within the content violate the character set specified in the XML

standard, as well as removing or commenting out DOCTYPE and other declarations

that may only occur at the start of stand-alone XML documents.

The information model expressed in the AdsMLEnvelope Schema enables the

following content types:

1. XML document - any well-formed XML document can be transported without

any special precautions.

2. XML string data - any string including only characters that are valid according

to the XML standard can be transported, provided that the string is marked as

a CDATA section and does not include characters such as <&> that may

destroy the well-formedness of the XML structure.

3. Non-XML string data and binary data - all strings including characters that

cannot be properly represented in XML documents, e.g. binary data, have to

be encoded using, for instance, hexbinary or base64binary encodings.

The AdsMLEnvelope standard does not require implementers to choose a particular

programming technique when implementing the packaging as long as the above

requirements on the resulting content are met.

In case of binary or other non-XML data where some encoding method has been

used, the method must be recorded in the Item level metadata to enable the

recipient to decode the data before routing it to the Item handler.

9.1.2 Responsibilities list

• Create a syntactically valid Item

• Place the content in an Item Content element, encoding it as necessary so

that it can safely be carried inside an AdsMLEnvelope (i.e. remove any

character sequences that would cause an XML parsing error)

• Use an encoding mechanism that will be acceptable to the recipient

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 59 of 68

• Fill in all Item-level metadata, including addressing information, based on

either information provided by the Content Creating Application or metadata

inside the generated content

• Ensure that the values in the addressing metadata follow the patterns

described in the “Addressing Scenarios” section of this document.

• Encrypt the information, if required, using an encryption mechanism that will

be acceptable to the recipient

• Update the Item’s history stack

o Note: in case of a “store and forward” operation of an entire Envelope,

where none of its Item contents changes, it may be more appropriate

for the Envelope Packager to increment the history stacks of the Items

in the Envelope

• Optionally, merge alternative representations of the same content that are

intended for the same recipient into a single Item

o Note: depending on the source and nature of the contents, this

function may need to be performed by a different component.

9.2 Responsibilities of an Item Redirector
• Optionally redirect the Item to a different recipient, based on information

contained in the PPA between the current business entity and the stated

Destination of the item.

9.3 Responsibilities of an Envelope Packager
• Create a syntactically correct AdsMLEnvelope containing either a single

Response or one or more Items

o Identify Items that are intended for the same recipient and place them

in an AdsMLEnvelope

o Fill in the header-level metadata of that Envelope

• Transmit the Envelope to the intended recipient’s AdsMLEnvelope Processor

via the transport mechanism and to the address specified in the relevant PPA

• Optionally, respect the priority levels of the available Items and Responses

when determining which ones to package and deliver, and in what sequence

• Optionally, store and resend Envelopes that contain Items until an

acknowledgment has been received

o Do not store and resend Envelopes that contain a Response.

9.4 Responsibilities of an Envelope Receiver
• Ensure that the Envelope comes from a “trusted sender”

• Validate that the Envelope’s structure and non-user-defined metadata

conform to the AdsMLEnvelope schema whose version is stated in the

message header, and that this version is acceptable to the recipient

• Validate that any user-defined metadata in the Envelope conforms to PPA

agreed between the sender and recipient.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 60 of 68

• If required by the combination of the results of the validation process, the

Transmission/Response Mode that pertains to this Envelope, and the relevant

metadata in the Envelope’s header, provide sufficient information to the

Envelope Response Creator that it can create an appropriate Response to this

Envelope.

• If the Envelope’s status is “test” or a Catastrophic Error has occurred, ensure

that none of the Items in the Envelope are routed for further processing.

• If any of the Items in the Envelope trigger Item-level errors, ensure that

those Items are either discarded or routed to error handling.

• Depending on the role played by the current business entity and the nature of

the Items contained within the envelope, handle the Envelope according to

internal business rules, performing some combination of the following actions:

o Extract those individual Items that do not have Item-level errors and

have not reached their final destination (“store and forward”),

increment their history information as required and send them to the

AdsML Item Redirector.

o Extract those Items that do not have Item-level errors and send them

to the Item Unpacker

• Optionally, respect the priority levels of the Envelopes and the Items within

them when determining which ones to process and route internally, and in

what sequence

9.5 Responsibilities of an Item Content

Unpacker
• Remove the contents of the Item and restore it to a condition that is

functionally equivalent to the contents that were originally placed in the Item.

• If an Item contains alternative representations of the same content, select the

alternative version that will be processed and route the Item to the

appropriate Content Consuming Application for that type of Item

• Route the restored content to the appropriate Content Consuming Application.

o The decision of where to route a given unpacked Item is expected to

be based on a combination of the information found in the Item

header, including:

� Format (e.g. the name of standard) with its associated Version

� Message type (e.g. Booking, materials delivery, etc.)

� Message class (Standard business information, administrative

acknowledgement or error)

� Any user-defined properties

o NOTE: In some cases, it will be necessary to store the unpacked

content as a file in the recipient’s file system. In that case, you can

use a user-defined property in the Item header to send the target

filename to the content unpacker.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 61 of 68

9.6 Responsibilities of a Response Creator
• Create a syntactically valid Envelope Response that contains all required

metadata and indicates the nature of the Response

• If a Catastrophic error was encountered, indicate the nature of the error

• If one or more Item-level errors were encountered:

o Indicate at least the nature of the first error, and optionally indicate

the nature of any additional errors

o Identify all of the Items (if any) that were processed without error

• Include either a copy of the original Envelope or its ID

• Provide the Response to the Envelope Packager for transmission to the sender

of the original Envelope

9.7 Responsibilities of a Response Processor
• If an error has occurred, take appropriate action such as logging the error

and/or notifying an operator

• If no error has occurred and the Transmission/Response Mode is “Store and

resend until acknowledged”, indicate to the system that the Envelope to which

this is a Response has been received, so no further resending is necessary.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 62 of 68

10 Conformance

10.1 Approach
The Conformance requirements in this section are designed to facilitate the process

by which two or more trading partners implement systems that exchange

AdsMLEnvelope messages, by providing sufficient information so that the trading

partners can reasonably determine that the behavior of the systems they have built,

and the structure and contents of the Envelopes being exchanged between those

systems, conform to the AdsMLEnvelope specification.

Conformance is defined in terms of mandatory “Core” functionality and information

content, supplemented by two additional “Levels” of optional functionality and

information content. An AdsMLEnvelope processor can therefore be labeled as

supporting either “core”, “level 1” or “level 2” functionality.

Using this approach, in order for two trading partners to agree on the functionality

that they will support when communicating with each other, their first step should be

to determine the Levels of support that are provided by their systems. Only optional

functionality that is supported by both of their systems can be agreed upon.

The Technical Working Group feels that this approach provides an appropriate degree

of information, which will enable users to implement systems that successfully

exchange AdsMLEnvelope messages. It is not a current goal of the Technical Working

Group to go further and define Conformance to a level of detail that would enable

objective third party testing and certification of AdsMLEnvelope Conformance.

10.2 Conformance levels
This section summarizes the functionality that is associated with each Level of AdsML

conformance.

10.2.1 Core
An AdsMLEnvelope Processor must provide all of the functionality described as

mandatory in this document that is relevant to the role(s) played by that processor

(e.g. Item Redirector, Envelope Packager, etc.), with the exception of the following:

• No validation of user-defined vocabulary values

o (Note that the lack of this validation does not prevent the inclusion of

such values in an AdsMLEnvelope message: it merely means that the

recipient will not be able to validate that the user-defined values in a

given message conform to the relevant PPA)

• No “Store and resend until acknowledged” capabilities

• No use of alternative Item content within a given Item

• No address redirection

• No special handling based on the Priority attribute

10.2.2 Level 1
An AdsMLEnvelope “Level 1” processor must provide all of the “core” functionality

plus:

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 63 of 68

• Validation of user-defined vocabulary values

• “Store and resend until acknowledged” capabilities

10.2.3 Level 2
An AdsMLEnvelope “Level 2” processor must provide all of the “Level 1” functionality

plus:

• Support for use of alternative Item content within a given Item

• Address redirection

• Special handling based on the Priority attribute

o This means that higher priority items and envelopes MUST be handled

“first”. However, the nature of the handling is left up to the

implementer.

10.3 Conformance requirements
This section consists primarily of conformance requirements that were defined in

AdsML Requirements version 1.0. The requirements in this section apply in addition

to the conformance requirements that are described throughout the remainder of this

document.

10.3.1 Allowable Item content
1. The contents of an Item SHALL be a single XML document instance or non-XML

character string that conforms to one of the following three options:

a. An XML document instance: a valid or well-formed XML document that

conforms to the W3C's Recommendation Extensible Markup Language

(XML) 1.0 (Second Edition) (http://www.w3.org/TR/REC-xml/), in

which any declarations (such as DOCTYPE) that are not permitted in

the body of an XML document have been removed or commented out.

b. XML string data: any string including only characters that are

permitted according to the XML standard can be transported and does

not include characters such as <&> that may destroy the well-

formedness of the AdsMLEnvelope’s XML structure.

c. Non-XML string data and binary data: all strings including characters

that cannot be properly represented in XML documents, e.g. binary

data, have to be encoded using, for instance, hexbinary or

base64binary encodings.

This requirement is meant to ensure that no characters within the Item content

violate the character set specified in the XML standard, as well as removing or

commenting out DOCTYPE and other declarations that may only occur at the start of

stand-alone XML documents.

2. An Item’s Content data content may contain a reference to the location of one

or more external information objects, for example, artwork files that are

retrievable from a specified URL or FTP address.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 64 of 68

10.3.2 Alternative representations of the same

advertising information
1. A user (such as an aggregator) may choose to represent a single instance of

advertising information (such as a particular insertion order) using multiple

XML Standards or vocabularies (such as IfraAdConnexion and SPACE/XML)

and convey them in an AdsMLEnvelope, provided that:

a. The trading partner agreement between the sender and recipient MUST

allow for the transmission of alternative representations of the same

advertising information

b. All of the alternative representation of the information MUST be

contained in a single Item

c. All such Items MUST be identified as being alternative representations

of the same advertising information

d. The standard or vocabulary used for at least one of those Items MUST

conform to the relevant trading party agreement between the sender

and the recipient.

2. The recipient of an Envelope containing alternative representations of the

same advertising information SHALL be free to use whichever of those

alternative Items it chooses to use (or none of them, if none conforms to the

relevant trading party agreement), and to discard the rest of them, without

having opened or read any of the alternative representations.

10.3.3 Communication with internal systems
The only required interaction between an AdsMLEnvelope Processor and other

internal systems (such as a booking system, page layout system, etc.) is that the

AdsMLEnvelope Processor must be able to receive advertising information from those

systems and send advertising information to those systems. The AdsMLEnvelope

Processor is not required to exchange any other kinds of information with internal

systems, for example, confirmation details about when and how a given Item was

transmitted to a trading partner.

10.3.4 Creation of AdsMLEnvelope messages
An AdsMLEnvelope processor SHALL generate AdsMLEnvelope and AdsMLEnvelope

Response messages that are valid according to the version of the AdsMLEnvelop

standard that is referenced in each message.

10.3.5 Message logging
An AdsMLEnvelope Processor is not required to store persistent information about

messages that it has sent or received, except to the extent necessary to support the

immediate generation of an Envelope Response message (a mandatory capability),

or to the extent necessary to support resending previously sent AdsMLEnvelope

messages (an optional capability).

10.3.6 Message resending
1. When an AdsMLEnvelope Processor resends a previously sent message, it

SHALL increment the “number of times this message has previously been

transmitted” counter.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 65 of 68

2. An AdsMLEnvelope Processor that has implemented “Store and resend until

acknowledged” functionality MUST also have implemented the “Send and

forget” functionality, and MUST use “Send and forget” as its default

communications mode when exchanging AdsMLEnvelope messages with a

system that has not affirmatively agreed to use the “Store and resend until

acknowledged” functionality.

10.3.7 Processing model
AdsML is not intended to constrain an implementation to follow any particular

processing model, provided that the AdsML implementation fulfills the operational

requirements described in the relevant AdsML documentation.

10.3.8 Response requirement
An AdsMLEnvelope Processor SHALL act on the response-required value in an AdsML

message, when present, by sending an acknowledgement Response message when

requested to do so, even when this behavior contradicts the relevant trading partner

agreement.

10.3.9 Redirection
1. An AdsMLEnvelope Processor MUST NOT redirect an Item back to its Sender.

2. Redirection can be based on any values contained in the Item’s metadata as

defined in the AdsMLEnvelope Specification, including Item-level user-defined

Properties. However, redirection MUST NOT be based on information that is

only found inside the Item’s ContentData element.

10.3.10 System testing
1. An AdsMLEnvelope Processor SHALL support the transmission of test Envelope

and test Response messages.

2. When an AdsMLEnvelope Processor receives a test Envelope, it SHALL

generate a Response to that Envelope even if no response would have been

required had it not been a test message.

10.3.11 Transmission/Response modes
1. An AdsML processor MUST support “Send and forget” functionality.

2. The “Store and resend until acknowledged” model is preferred over the “Send

and forget” model and SHOULD be followed if possible.

3. An AdsML Processor MUST ONLY follow the “Store and resend until

acknowledged” model when communicating with a trading partner that has

explicitly agreed to follow this model.

10.3.12 Validation and feedback
1. An AdsMLEnvelope Processor SHALL ensure that an incoming AdsMLEnvelope

message is valid according to the AdsMLEnvelope standard. This may be done

either by performing XML Schema validation using the supplied XML Schema

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 66 of 68

and controlled vocabulary mechanisms, or by any other means that achieves

the same results.

2. When an invalid Envelope is received, the AdsMLEnvelope Processor SHALL

transmit a valid Response message to the sender informing them of the

error(s).

10.3.13 Verification and feedback
An AdsMLEnvelope Processor SHOULD verify that the contents an incoming

AdsMLEnvelope message conforms to the relevant agreements between its sender

and recipient.

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 67 of 68

11 Appendix A: Acknowledgement for

contributions to this document

Acknowledgement and thanks for contributions to this document are also due to:

• Members of the AdsML Technical Working Group, and including contributions

from,

• Jay Cousins (RivCom Ltd) – jay.cousins@rivcom.com

• Adrian Davis (Quickcut) - adavis@quickcut.com

• Marcel Dumont (Rosetta) – marcel@rosetta.nl

• Joe Kirk (K Media Solutions) - kmedia@btinternet.com

• Christian Rohrbach (iware - PubliGroupe)

• Reviewers of the Last Call Working Draft,

• Hans Faye-Schjøll (Knowlex AS) schjoell@knowlex.no

• Israel Viente (Vio Worldwide Ltd.) israel_viente@il.vio.com

• Jon Simcox (Oppolis Software Ltd.) jon.simcox@oppolis.com

AdsMLEnvelope 1.1 – Part 1 – Approved Specification 30 June 2009

Copyright © 2009 AdsML Consortium. All rights reserved. Page 68 of 68

12 Appendix B: Intermediary and on-

behalf-of business partners
As the word “Partnership” implies, it is assumed that in most cases any two business

entities that are willing to exchange AdsMLEnvelope messages with each other will

have some form of business relationship, and will “partner” in the exchange of

messages. However, this does not mean that they must have a traditional business

relationship in which one of them pays the other for its services.

Often, two business entities will need to exchange AdsMLEnvelope messages with

each other because one of them is acting as the agent for a third party. For example,

suppose A wishes to send ad content to B, but B hires C to act as its agent and

receive all such materials. In this case A and B probably have a traditional business

relationship, and B and C certainly have one, but there is no requirement that A and

C have a direct business relationship.

On the other hand, in order to implement AdsMLEnvelope functionality between A

and C, there is a requirement that A’s and C’s systems behave as if they had a

relationship. A’s AdsMLEnvelope system must “know” that it should redirect ad

content from B to C, as well as what types and formats of information C will accept.

C’s AdsML system must “know” that A is a trusted sender and be willing to accept ad

content from A.

In this scenario, because B is the only one of the three players that has a

relationship with both A and C, it is up to B to ensure that A and C have the

information they need. B must ensure that A knows what types and formats it can

send, and the circumstances under which they should be redirected to C. It must

also ensure that C is willing to accept such messages from A, and that C knows what

to do with them when they arrive.

At the end of this process, the result (in terms of AdsML’s requirements) should be

much as if A and C had a direct business relationship with each other: each of them

should have a PPA on file that enables them to communicate with each other in

appropriate ways.

In the rest of this document we ignore these complexities and use the term “partner”

to describe any two entities that wish to exchange AdsML documents.

